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   Abstract—This  paper  presents  a  novel  fixed-time  stabilization
control (FSC) method for a class of strict-feedback nonlinear sys-
tems  involving  unmodelled  system dynamics.  The  key  feature  of
the  proposed  method  is  the  design  of  two  dynamic  parameters.
Specifically, a set of auxiliary variables is first introduced through
state  transformation.  These  variables  combine  the  original  sys-
tem states and the two introduced dynamic parameters, facilitat-
ing  the  closed-loop  system  stability  analyses.  Then,  the  two
dynamic parameters are delicately designed by utilizing the Lya-
punov method, ensuring that all the closed-loop system states are
globally  fixed-time  stable.  Compared  with  existing  results,  the
“explosion  of  complexity” problem  of  backstepping  control  is
avoided.  Moreover,  the  two  designed  dynamic  parameters  are
dependent  on  system states  rather  than  a  time-varying  function,
thus the proposed controller is  still  valid beyond the given fixed-
time  convergence  instant.  The  effectiveness  of  the  proposed
method is demonstrated through two practical systems.
    Index Terms—Dynamic gain feedback control,  fixed-time stabiliza-
tion, strict-feedback nonlinear system.
  

I.  Introduction

F IXED-TIME stabilization control (FSC), which can ensure
system trajectories to converge to zero before a given time

regardless of the initial conditions, has been extensively stud-
ied  in  the  past  decades  [1].  This  kind  of  control  method was
firstly  formulated  by  Polyakov  [2]  in  which  the  stabilization
problem for uncertain linear plants  is  considered.  It  is  shown
that FSC can provide fast response speed together with a high
control  precision.  Meanwhile,  FSC  is  also  able  to  deal  with
uncertain  disturbances  and  inherent  nonlinear  dynamics.
Because  of  these  properties,  FSC  has  been  widely  used  in
many mechanical and electromechanical systems [3]–[7].

The design of  FSC can be  divided into  two categories:  the
time-dependent  control  and  the  state-dependent  control.  The

time-dependent  control  is  also  called  the  pre-specified  time
control  [8],  [9],  in  which  a  time-varying  function  is  used  to
regulate the converging rate. This function would converge to
zero or infinity at the pre-specified time, causing the converg-
ing rate  to be infinite.  Although this  kind of  control  can ren-
der  system  states  to  converge  to  zero  at  any  time,  the  con-
troller  becomes  invalid  after  the  given  settling  time.  To  deal
with  this  problem,  a  switching  strategy  has  to  be  adopted
which complicates the system control design [10], [11].

For  the  state-dependent  control  design,  various  technolo-
gies have been introduced in the existing literature.  A hybrid
control  algorithm  was  introduced  by  combining  a  finite-time
stabilizing  control  and  a  fixed-time  attracting  control  in  [2].
To avoid the chattering regimes from hybrid controls,  a  non-
hybrid control strategy with an involution operation sign was
developed  for  both  linear  and  nonlinear  systems  in  [12].
Through proposing a condition on a state-dependent function,
Hua et al. [13] proposed a continuous FSC method for nonlin-
ear  systems.  The  implicit  Lyapunov  functions  were  intro-
duced in [14] to construct fixed-time observers. Recently, Sun
et al. [15] studied the fixed-time fuzzy tracking control prob-
lem for a class of unknown nonlinear systems. The fixed-time
stabilization problem for linear systems with input delay was
also studied in [16]. However, it should be noted that the con-
trol  structures  of  the  aforementioned results  all  possess  com-
plicated forms which are not easy to implement.

The dynamic gain control approach has been widely used to
solve  the  stabilization  problems  of  nonlinear  systems.  This
approach  is  able  to  cope  with  system  uncertainties  with  the
desired  control  performance  guaranteed.  With  the  help  of
dynamic  gain  control  approach,  the  stabilization  problems
were  solved  in  [17]–[21].  It  is  shown  in  [17]–[21]  that  the
control  designed  by  the  dynamic  gains  has  a  simple  linear
form  which  can  greatly  simplify  the  controller  design.  This
motivates us to design FSC control method for uncertain non-
linear systems by using the dynamic gain control approach in
this  paper.  In  particular,  the  main  contributions  of  this  paper
are summarized as below:

1) The proposed controller consists of two dynamic parame-
ters  and  has  a  simple  quasi-linear  form.  The  two  dynamic
parameters  are  delicately  designed by utilizing the  Lyapunov
method,  ensuring  that  all  the  closed-loop  system  states  are
fixed-time stable. Compared with existing results, the “explo-
sion  of  complexity” problem  of  backstepping  control  [9]  is
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successfully avoided.
2)  The  designed  controller  can  keep  operating  beyond  the

given  fixed-time  instant  without  any  control  strategy  switch-
ing.  This  is  different  from  the  prescribed-time  control  meth-
ods  in  [9]  and  [11],  where  a  time-varying  function  is
employed to regulate  the system performance.  Our controller
is particularly useful to cope with the case when the pre-speci-
fied time is not accurately determined.

The rest of this paper is organized as follows: Section II for-
mulates  the  fixed-time  stabilization  problem  for  the  strict-
feedback nonlinear system, while Section III details the design
of  the  control  method  and  analyzes  the  system  performance.
After that, the proposed control method is verified in Section
IV  through  two  actual  systems.  Finally,  Section  V  gives  the
conclusion remarks.  

II.  Preliminaries and Problem Formulation

Consider the strict-feedback nonlinear system
 

ẋ1 = x2+ f1(x1)

ẋ2 = x3+ f2(x1, x2)

...

ẋn = u+ fn(x1, x2, . . . , xn)

(1)

x = (x1, x2, . . . , xn)T ∈ Rn u ∈ R
0

x(0) f1(·) fn(·)

where  is  the  system state,  and 
is the system input. The initial time instant is set as , and the
initial  system  state  is  denoted  as .  to  are
unknown nonlinear functions satisfying the following assump-
tion [22], [23].

x = (x1, . . . , xn)T ∈ RnAssumption 1: For any , it holds that
 

| fi(x1, x2, . . . , xi)| ≤ c (|x1|+ |x2|+ · · ·+ |xi|) (2)
i = 1,2, . . . ,nfor , where c is a positive constant.

System (1)  under Assumption 1 is  a  typical  strict-feedback
nonlinear system which has been widely studied. For example,
its asymptotic stabilization problems have been solved via the
dynamic gain feedback control method [21], [23], [24] or the
backstepping design method [25],  [26].  The fixed-time stabi-
lizing  problem  was  also  studied  in  [27]–[29]  through  back-
stepping  design  method.  This  paper  will  develop  a  dynamic
gain control method to achieve fixed-time stabilization whose
definition is given below:

Definition  1  (Globally  Fixed-Time  Stable  [2],  [30]): Con-
sider
 

ẋ(t) = g(x(t)) (3)
x(t) ∈ Rn g(·) : Rn→ Rn

g(0) = 0
0

x0 ∈ Rn

x = 0
T (x0) : Rn→

R+∪{0} x(t; x0) = 0 t ≥ T (x0) x(t; x0)
x0 ∈ Rn

T (x0)

x = 0
T (x0)

Tmax > 0 T (x0) ≤ Tmax,∀x0 ∈ Rn Tmax

where  is  the  system  state,  and  is  a
continuous  function  satisfying .  The  initial  time
instant  is  assumed  as  and  the  initial  state  is  denoted  as

. System (3) is globally finite-time stable at the equilib-
rium  if  it  is  Lyapunov  stable  and  finite-time  attractive,
i.e.,  there  exists  a  local  bounded  function 

 such that  for  all ,  where 
is  the  solution  of  (3)  with  the  initial  state .  The  func-
tion  is  called  the  settling  time  function.  It  is  said  that
system  (3)  is  globally  fixed-time  stable  at  the  equilibrium

 if  it  is  globally  finite-time  stable  and  the  settling  time
function  is globally bounded by some positive constant

,  i.e., .  The  constant  is

called the setting time.

x = 0

With the  above definition  in  mind, the  control  objective  of
this paper is to design the control signal u such that system (1)
is  globally  fixed-time stable  at  the  equilibrium .  To this
end,  the  following  two  Lemmas  are  given  for  the  controller
design later.

0 < τ < 1 a,b ≥ 0Lemma 1 ([31]): Let , and . It holds that
 

(a+b)τ ≤ aτ+bτ. (4)
a,b,γ

τ ∈ (0,1)
Lemma  2  ([20]): Let  be  positive  real  numbers,  and

. Then, the following inequality holds:
 

− a2

b1−τ ≤ −
1

1+τ
γ−1a1+τ+

1−τ
1+τ

γ−
2

1−τ b1+τ. (5)
  

III.  Main Results
  

A.  Control Design
System (1) can be expressed in the matrix form

 

ẋ = Ax+Bu+F(x) (6)
where
 

A =
(
0(n−1)×1 I

0 01×(n−1)

)
, B =

(
0(n−1)×1

1

)
(7)

F(x) =
(

f1(x1) f2(x1, x2) · · · fn(x1, x2, . . . , xn)
)T

and .
Let

 

D = diag{1,2, . . . ,n−1,n}. (8)
Then,  we  compute  the  parameters  through  the  following

algorithm.

Algorithm 1 Static Parameters for the FSC

K = (k1,k2, . . . ,kn)T ∈ Rn1 According  to  [32],  find  a  vector  which
meets
 

(A−BK)T P+P (A−BK) ≤ −I

PD+DP ≥ 0.

α1 α22 Denote ,  as  the  minimum  and  maximum  eigenvalues  of
matrix P, respectively; (

max
{
1−

(2n+2) α1
λmax(PD+DP) , 0

}
,1

)
λmax (·)

3 Find  a  constant τ which  belongs  to  the  interval 

, where  is the maximum eigenvalue of
a matrix;

4 Find a constant β to meet
 

β ≥ λmax ((2n+2) P− (1−τ) (PD+DP)) .

:
It is noted that from Algorithm 1 that the following inequal-

ity holds
 

0 < (2n+2)P− (1−τ)(PD+DP) ≤ βI. (9)
To make system (1) fixed-time stable, the control input u is

designed as
 

u = −k1
rn

2

rn(1−τ)
1

x1− k2
rn−1

2

r(n−1)(1−τ)
1

x2− · · ·− kn
r2

r1−τ
1

xn (10)

r1,r2where  are  the  dynamic  parameters  to  be  designed.  It  is
worth pointing out that controller (10) is in a quasi-linear form
which has a  simple structure and is  easy to  implement,  com-
pared  with  existing  control  strategies  using  the  backstepping
design method.  
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B.  Design of The Dynamic Parameters
Before designing the dynamic parameters, a set of new vari-

ables is introduced as below
 

zi =
xi

rn+1−i+iτ
1 ri

2

, i = 1,2, . . . ,n. (11)

z = (z1,z2, . . . ,zn)T ∈ Rn r1 r2Let .  Then,  the  dynamics ,  are
designed as
 

ṙ1 =−
1

4β
rτ1r2+

r2

4βr2−τ
1

min
{
∥z∥2,1

}
ṙ2 =

r2
2

2α2r1−τ
1

max

 ∥z∥2µrµ+1
2

−1,0


0 < r1(0) ≤ 1, r2(0) ≥max{8cn∥P∥,1}

(12)

µ ∈ (0,+∞)where β is  a  constant  given  in  (9),  and  is  a  con-
stant to regulate the settling time T.

r1 r2
0 < r1(0) ≤ 1 r2(0) ≥max{8cn∥P∥,1} ṙ2 ≥ 0

r2(t) ≥ 1 r2 ≥ ∥z∥
2µ
µ+1 ṙ2 = 0 r2

r2 < ∥z∥
2µ
µ+1

Now  we  discuss  the  dynamics  of , .  Because
 and ,  one  has  and

thus . When , we have  so that  con-
verges to a constant. When , since it holds
 

ṙ2 =
r2

2

2α2r1−τ
1

 ∥z∥2µrµ+1
2

−1

 > 0 (13)

r2 ∥z∥
2µ
µ+1 r2

∥z∥
2µ
µ+1 r2 ≤ ∥z∥

2µ
µ+1

 keeps increasing towards . Therefore,  is increasing
to approximate  when .

r1 ∥z∥ ≥ 1For the dynamic , when , it holds
 

ṙ1 = −
r2

4β
1

r2−τ
1

(
r2

1 −1
)
. (14)

r1 = 1
r1(t) ∈ (0,1] r1(0) ∈ (0,1] ∥z∥ ≤ 1

It  can  be  seen  that  the  equilibrium  is .  Thus,  we  can
deduce into  from .  When ,  we
have
 

ṙ1 = −
r2

4βr2−τ
1

(r2
1 −∥z∥2) (15)

r1 ∥z∥ r1 ∈ [0,1]which  means  converges  towards .  Therefore, 
always holds.  

C.  Stability Analysis
With  the  above  controller  and  parameter  dynamics  given,

we are ready to present the following theorem.

r1,r2
α1 α2

x(0)

Theorem 1: Consider system (1) under Assumption 1. If the
controller u is  designed as  (10)  with  the  dynamic parameters

 given by (12), in which the vector K, matrix P, and con-
stants , , β, τ are determined by Algorithm 1, then system
(1) is globally fixed-time stable with a settling time T for any
initial state . Moreover, the settling time T satisfies
 

T ≤
2
(
α2+

β
2

) 1−τ
2

ρ(1−τ) +
2α2

α1
+

2αµ+1
2

µ
(16)

ρ =min

 1

4(1+τ)α
1+τ

2
2

(
1+τ

2(1−τ)
) 1−τ

2 , 1

2
5−τ

2 β
1+τ

2

 .where 

z = (z1,z2, . . . ,zn)T z1 znProof: Consider the variable  with  to 
defined in (11). Then, we have 

ż =
r2

r1−τ
1

(A−BK)z− ṙ1

r1
D1z−

ṙ2

r2
D2z+ F̃ (17)

D1 = (n+1)I− (1−
τ)D D2 = D F̃ =

(
f1(·)

rn+τ
1 r2

· · · fn(·)
r1+nτ
1 rn

2

)T
.

where the matrices A and B are given in (7), 

, , and 
From (9), it can be obtained that P meets the following con-

ditions:
 

P(A−BK)+ (A−BK)T P ≤ −I

0 < PD1+D1P ≤ βI
PD2+D2P ≥ 0
α1I ≤ P ≤ α2I.

(18)

V = zT PzLet .  Then  its  derivative  along  with  (17)  can  be
computed as
 

V̇ |(17) =
r2

r1−τ
1

zT
(
P(A−BK)+ (A−BK)T P

)
z

− ṙ1

r1
zT (PD1+D1P)z

− ṙ2

r2
zT (PD2+D2P)z+2zT PF̃. (19)

ṙ1 ≥ − 1
4β r
τ
1r2 ṙ2 ≥ 0 r1(t) ≥ 0

r2(t) ≥ 1
It can be seen from (12) that , , ,

and . Thus, we have
 

V̇ |(17) ≤ −
r2

r1−τ
1

∥z∥2+ 1
4β

r2

r1−τ
1

zT (PD1+D1P)z

+2zT PF̃

≤− 3r2

4r1−τ
1

∥z∥2+2zT PF̃. (20)

F̃Following Assumption 1, the nonlinear term  satisfies:
 ∣∣∣∣∣∣∣ 1

rn+1−i+iτ
1 ri

2

fi(x1, x2, . . . , xi)

∣∣∣∣∣∣∣
≤ c

|x1|
rn+1−i+iτ

1 ri
2

+ c
|x2|

rn+1−i+iτ
1 ri

2

+ · · ·+ c
|xi|

rn+1−i+iτ
1 ri

2

≤ c
r(i−1)(1−τ)

1 |z1|
ri−1

2

+ c
r(i−2)(1−τ)

1 |z2|
ri−2

2

+ · · ·+ c|zi|

≤ c|z1|+ c|z2|+ · · ·+ c|zi|
≤ c
√

n∥z∥ (21)
∥F̃∥ ≤ cn∥z∥.which indicates  Combining (20) and (22) yields

 

V̇ |(17) ≤ −
3r2

4r1−τ
1

∥z∥2+2cn∥P∥∥z∥2

≤− 3r2

4r1−τ
1

∥z∥2+ 2cn∥P∥
r1−τ

1

∥z∥2

≤− r2

2r1−τ
1

∥z∥2 (22)

r2(t) ≥ r2(0) ≥ 8cn∥P∥where  is employed.
The following proof is divided into four parts. Part I shows

the  fixed-time  attractivity  of z,  while  the  fixed-time  conver-
gence  of z is  guaranteed  in  Part  II.  The  fixed-time  conver-
gence of x is derived from the dynamic of z in Part III, and the
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upper bound of the settling time T is estimated in Part IV.
Part I: Fixed-Time Attractivity of System (17)

z(0) ∈ Rn

z(t) Ω = {z | ∥z∥2 ≤ 1}
T0

In this part, we show that for any initial condition ,
 will converge to a neighbourhood  before

a given time .
ω = V

r2
. r2 < ∥z∥

2µ
µ+1 r2Consider  If ,  in (12) satisfies

 

ṙ2 =
r2

2

2α2r1−τ
1

∥z∥2µrµ+1
2

−1

 (23)

and
 

ω̇ =
V̇
r2
− ṙ2

r2
2

V

≤ − 1
2r1−τ

1

∥z∥2− 1
2α2r1−τ

1

 ∥z∥2µrµ+1
2

−1

V

≤ − 1
2α2r1−τ

1

∥z∥2µ

rµ2

V
r2

(24)

∥z∥2 ≥ V
α2

where  is utilized.

r2 ≥ ∥z∥
2µ
µ+1 r2 ṙ2 = 0 r2If ,  then  in  (12)  satisfies .  Thus 

becomes a constant, and the derivative of ω is
 

ω̇ ≤ − 1
2α2r1−τ

1

V ≤ − 1
2α2r1−τ

1

∥z∥2µ

rµ2

V
r2
. (25)

r2 < ∥z∥
2µ
µ+1 r2 ≥ ∥z∥

2µ
µ+1To  conclude,  whether  or ,  it  can  be

deduced from (24) and (25) that
 

ω̇ ≤ − 1
2α2r1−τ

1

∥z∥2µ

rµ2

V
r2
. (26)

r1 ∈ [0,1] ω̇ ≤ − 1
2αµ+1

2

ωµ+1,Since , one obtain  and
 

ω(t) ≤

 1
1
ωµ(0) +

µ

2αµ+1
2

t


1
µ

, ω(0) > 0

ω(t) = 0, ω(0) = 0.

t ≥ 2αµ+1
2
µ ω(t) ≤ 1When , it holds . Back to (22), we obtain

 

V̇ |(17) ≤ −
1
2
∥z∥2V ≤ − 1

2α2
V2. (27)

V(
2αµ+1

2
µ ) , 0If , one can get

 

V(t) ≤ 1

1

V(
2αµ+1

2
µ )

+ 1
2α2

(t− 2αµ+1
2
µ )

and
 

∥z(t)∥2 ≤ 1

α1

V(
2αµ+1

2
µ )

+
α1
2α2

(t− 2αµ+1
2
µ )
.

t ≥ T0 =
2α2
α1
+

2αµ+1
2
µ z(t)Therefore,  when ,  will  be  in  the

∥z(t)∥2 ≤ 1 ∀t ≥ T0
r2 ≥ 1 T0 ṙ2(t) = 0

r2(t) t ≥ T0

neighborhood  Ω,  i.e., , .  Meanwhile,  by
noticing , after the time instant , it holds that ,
which means  will converge to a constant when .

Part II: Fixed-Time Stability of System (17)
∥z(t)∥ ≤ 1 t ≥ T0

z(t) = 0 t ≥ T ∥z∥2µ

rµ+1
2

−1 < 0
r2

r1

From  Part  I,  we  have  for .  This  part  will
show that under this condition, a time instant T can be found

which  guarantees  for  any .  Since 
holds,  the  parameter  becomes  constant.  As  a  result,  the
parameter  satisfies
 

ṙ1 = −
1

4β
rτ1r2+

r2

4βr2−τ
1

∥z∥2. (28)

ϖ = V + β2 r2
1,Letting  its derivative can be computed as

 

ϖ̇ ≤ − r2

2r1−τ
1

∥z∥2− 1
4

r1+τ
1 r2+

r2

4r1−τ
1

∥z∥2

≤ − 1
4r1−τ

1

∥z∥2− 1
4

r1+τ
1 (29)

r2 ≥ 1where  is employed.
γ =

(
1+τ

2(1−τ)
)− 1−τ

2 ,Employing Lemma 2 and choosing  we can
get
 

− 1
4r1−τ

1

∥z∥2 ≤ − γ−1

4(1+τ)
∥z∥1+τ+ (1−τ)γ− 2

1−τ

4(1+τ)
r1+τ

1 .

Then, from (29) we can obtain
 

ϖ̇ ≤ − 1

4(1+τ)α
1+τ

2
2

γ−1V
1+τ

2 − 1
8

r1+τ
1

≤ −ρV 1+τ
2 −ρ

β
1+τ

2
2

2
1+τ

2

r1+τ
1 (30)

ρ =min

 1

4(1+τ)α
1+τ

2
2

γ−1, 1

2
5−τ

2 β
1+τ

2

 .where 

Employing Lemma 1 to (30) gives
 

ϖ̇ ≤ −ρ(V + β
2

r2
1)

1+τ
2 ≤ −ρϖ 1+τ

2 . (31)

Then, it holds
 

ϖ(t) ≤
(
ϖ

1−τ
2 (T0)− 1−τ

2
ρ(t−T0)

) 2
1−τ

(32)

t ∈ [T0,T ] ϖ(t) = 0 t > T = T0+

ϖ
1−τ

2 (T0) 2
(1−τ)ρ .

for .  Therefore,  when 
 This can be further deduced into

 

lim
t→T
∥z(t)∥ = 0, lim

t→T
r1(t) = 0. (33)

∥z(t)∥ r1(t)Thus, at the time instant T,  and  converge to zero.
Part III: Fixed-Time Stability of System (1)
From the definition of z in (11), it holds

 

x1 = rn+τ
1 r2z1

x2 = rn−1+2τ
1 r2

2z2

...

xn = r1+nτ
1 rn

2zn.

(34)
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Meanwhile, from (22), we have
 

∥z(t)∥2 ≤ 1
α1

V(t) ≤ 1
α1

V(0). (35)

r2The parameter  can be estimated as
 

r2(t) ≤max{ max
s∈[0,T ]

∥z(s)∥
2µ
µ+1 ,r2(0)}

≤max


(

1
α1

V(0)
) µ
µ+1

,r2(0)

 . (36)

Therefore, following (33) and (37) yields:
 

lim
t→T
∥x(t)∥ = 0.

z = (z1,z2, . . . ,zn)TMoreover,  under  the  new  variable ,  the
control signal u can be expressed as
 

u(t) = −r(n+1)τ
1 rn+1

2 Kz. (37)
r1 r2

limt→T ∥z(t)∥ = 0
As ,  and z are  all  bounded,  thus u is  bounded  all  the

time. Moreover, from (34) we have .
It can also be seen that

 

∥x(t)∥2 ≤ r2n
2 ∥z(t)∥

2

≤ 1
α1

max


(

1
α1

V(0)
) 2nµ
µ+1

,r2n
2 (0)

V(0). (38)

V(0) ∥x(0)∥ r2(0)

∥x(t)∥ x(0)

As  is determined by the initial state  and  is
chosen  by  the  designer,  we  can  conclude  that  the  upper
bounded of  is governed by the initial system state .

Part IV: Estimation of the Settling Time

ω(t) ≤ 1

t ≥ 2αµ+1
2
µ ω(t) ≤ 1

∥z(t)∥ ≤ 1 t ≥ T0 T0 =
2α2
α1
+

2αµ+1
2
µ

∥z(t)∥ ≤ 1 ϖ(t) = 0 t ≥ T
T = T0+ϖ

1−τ
2 (T0) 2

(1−τ)ρ

As discussed above,  the  FSC introduced in  this  paper  con-
tains three stages. The first  stage is to ensure ,  which
happens  when .  Then,  under  the  condition ,

we  can  get  when  with .  At
last,  from ,  it  holds  that  when  with

.

ϖ(T0) ≤ α2+
β
2Since , we have

 

T ≤
2
(
α2+

β
2

) 1−τ
2

ρ(1−τ) +
2α2

α1
+

2αµ+1
2

µ
(39)

which  is  not  dependent  on  the  system  initial  conditions.
Therefore,  the  designed  controller  (10)  and  (12)  can  render
system (1) globally fixed-time stable. ■

||z|| ||x||
r1 r1

Remark 1: Our control strategy does not suffer from the sin-
gularity  problem.  It  can  be  seen  from (13)  that ,  i.e., ,
converges  to  zero  before  does.  Therefore,  even  though 
tends to zero, the singularity problem for the control signal u
does  not  happen.  Indeed,  it  is  proved  in  Theorem  1  that  the
control signal is always bounded and converges to zero in the
end.

Remark  2: Our  proposed  control  method  is  essentially  dif-
ferent  from  the  prescribed-time  control  methods  in  [9]  and
[11] in the following aspects: 1) Our considered system model
is more general than the counterparts in [9] and [11]. Specifi-
cally,  the  system  model  in  [9]  contains  nonlinear  dynamics
that exist  only in the last  differential  equation, while the sys-

[t0, t0+T )
t ≥ t0+T

tem model in [11] has no nonlinear dynamics; 2) The control
action  of  our  method  does  not  have  to  terminate  at  the  pre-
specified  time  instant T while  the  methods  in  [9]  and  [11]
must.  This  is  because  [9]  and  [11]  adopt  a  monotonically
increasing  function  to  achieve  prescribed-time  control.  This
function is only valid in the time interval ,  thus the
control method becomes invalid when . By contrast,
our method does not need the above function and thus it keeps
valid all the time. This property is particularly useful to cope
with the case when the time instant T is not accurately deter-
mined.  

IV.  Simulation Results

In this paper, we present two simulation examples to verify
the effectiveness of our proposed method.

Example 1: Consider the one-link manipulator system given
in [33]
 {

Dq̈+Bq̇+N sin(q) = τr
Mτ̇r +Hτr = u−Kmq̇

(40)

q̇ q̈
τr

Km

where q, ,  are  the link position,  velocity and acceleration,
respectively.  is  the  torque  produced  by  the  electrical  sub-
system. u is the control input representing the electromechani-
cal torque. D is the mechanical inertia, B is the coefficient of
viscous friction at the joint, N is a positive constant related to
the  mass  of  the  load  and  the  coefficient  of  gravity, M is  the
armature  inductance, H is  the  armature  resistance,  and  is
the back electromotive force coefficient.

x1 = MDq x2 = MDq̇ x3 = MτrDenoting ,  and ,  (40)  can  be
transformed into
 

ẋ1 = x2

ẋ2 = x3+ f2(x1, x2)

ẋ3 = u+ f3(x2, x3)

(41)

f2(x1, x2) = − B
D x2−MN sin( x1

MD ) f3(x2, x3) = − Km
MD x2−

H
M x3

where , 
.

D = 5 kg ·m2 N = 0.2 M = 0.5 H Km = 0.05 N ·m/A B =
0.2 N ·m · s/rad H = 0.02Ω

c = 0.04
k1 = 2 k2 = 6 k3 = 3 τ = 1/2 β = 20.7

α1 = 0.2 α2 = 5 µ = 3

For  simulation,  the  system  parameters  are  set  as
, , , , 

, and . It can be verified that Assu-
mption 1 is satisfied with . Then, the control parame-
ters  are  set  as , , , , ,

, , . In particular, according to Theorem 1,
the controller for this one-link manipulator system is designed
as
 

u = −2r3
2r
− 3

2
1 x1−6r2

2r−1
1 x2−3r2r

− 1
2

1 x3 (42)
r1 r2where ,  are the dynamic parameters designed as

 

ṙ1 =−
1

4×20.7
r

1
2
1 r2+

r2

4×20.7r
3
2
1

min
{
∥z∥2,1

}

ṙ2 =
r2

2

2×5r
1
2
1

max

 ∥z∥6r4
2

−1,0


r1(0) = 0.9, r2(0) = 2.62

(43)

z =
(
x1/(r

7
2
1 r2), x2/(r3

1r2
2), x3/(r

5
2
1 r3

2)
)T
.with 
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x1, x2 x3
r1

[0,1] r2
3.4

[0,4]

The simulation results are presented in Fig. 1. It is observed
that the system states  and  converge to zero before the
instant T = 4 s. Meanwhile, the dynamic parameter  remains
in the interval  and converges to zero, while  increases
to about  and then remains the same. The control signal u is
also bounded and converges to zero. Moreover, it can be seen
that  the  closed-loop system can still  operate  beyond the  time
interval , which cannot be achieved through the pre-spec-
ified finite-time control method in [9] and [11].
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Fig. 1.     Simulation results for closed-loop system (41)−(43) with initial state
.

 

Example  2: In  this  example,  we  consider  a  more  complex
robotic manipulator coupled to a DC motor to further confirm
the effectiveness of  our proposed method.  The system model
[34] is given as below
 

J1q̈1+F1q̇1+K
(
q1−

q2

N
)
+mgd cosq1 = 0

J2q̈2+F2q̇2−
K
N

(
q1−

q2

N
)
= Kti

Li̇+Ri+Kbq̇2 = u

(44)

where  the  physical  meanings  of  the  relevant  parameters  are
displayed  in Table I.  To  facilitate  the  controller  design,  the
following coordinate transformation is introduced:
 

x1 = q1

x2 = q̇1

x3 =
K

J1N
q2−

mgd
J1

cos(q1)

x4 =
K

J1N
q̇2

x5 =
KKt

J1J2N
i− mgdK

J1J2N2 cos(q1)

u =
mgdR
KtN

cos(q1)+u∗.

(45)

Consequently, we have
 

ẋ1 = x2

ẋ2 = x3−
F1

J1
x2−

K
J1

x1

ẋ3 = x4+
mgd
J1

x2 sin(x1)

ẋ4 = x5−
F2

J2
x4+

K2

J1J2N2 x1−
K

J2N2 x3

ẋ5 =−
R
L

x5−
KbKt

J2L
x4+

mgdKx2 sin(x1)
J1J2N2 +

KtKu∗

J1J2NL
.

(46)

F1 = F2 = 1 N ·m · s/rad J1 = J2 = 1 kg ·m2 K =
1 kgf/mm N = 1, R = 1Ω L = 1 H Kb = 1 V/rad/s Kt =

1 N ·m g = 10 m/s2 m = 0.5 kg d = 0.2.
x(0) = [x1(0), x2(0), x3(0), x4(0),

x5(0)] = [1,1,1,1,1,1] , [r1(0),r2(0)] = [1,1]

For  the  sake  of  simulation,  the  system parameters  are  cho-
sen  as , , 

,  , , , 
, , ,  and  The  system’s

initial  condition  is  set  as 
 and .

k1 = 6,
k2 = k5 = 5, k3 = 8.5, k4 = 10, β = 20.7, τ = 0.5, α1 = 0.2
α2 = 5, µ = 3

The  control  objective  is  to  stabilize  system  (46).  It  can  be
verified  that  (46)  satisfies  Assumption  1,  thus  our  control
method can be applied. To show the effectiveness of our pro-
posed  method,  we  also  compare  our  method  with  the  one  in
[34].  The control parameters of our method are set  as 

     ,
 and ,  while  the  parameters  of  [34]  remain  the

same as those given in the simulation examples of [34].
The  simulation  results  are  presented  in Fig. 2.  As  can  be

observed, the system’s angular with our method converges to
zero  with  a  faster  speed  than  the  one  in  [34].  Moreover,  the
amplitude  of  our  control  signal  is  also  significantly  smaller.
This  clearly  demonstrates  the  advantage  of  our  proposed
method compared with the one in [34].  

V.  Conclusion

This paper has proposed a dynamic gain control method to

 

TABLE I 

Explanation of Parameters

Parameters Physical meanings
q1 Angular position of the link
q2 Motor shaft

m Link mass

g Acceleration of gravity

i Armature current

L Armature inductance

R Armature resistance

u Armature voltage

d Position of the link’s center of gravity

N Gear ratio

Kb Back EMF constant

K Spring constant

Kt Torque constant

J1, J2 Inertias constants

F1, F2 Viscous friction constants
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solve the fixed-time control problem for a class of strict-feed-
back nonlinear systems. The considered systems can describe
a  large  class  of  practical  systems  with  unmodelled  dynamics
satisfying  a  linear-growth  condition.  To  handle  the  unmod-
elled  system  dynamics,  two  auxiliary  parameters  are  deli-
cately designed. Our design method yields a quasi-linear con-
troller which ensures that the closed-loop system is fixed-time
stable.  Compared  with  existing  results,  our  proposed  method
avoids the “explosion of complexity” problem caused by con-
ventional  backstepping  control.  Moreover,  the  designed  con-
troller can keep operating beyond the given fixed-time instant
without  any  control  strategy  switching,  which  is  superior  to
the  conventional  prescribed-time  control.  Two  simulation
examples  have  verified  the  effectiveness  of  our  proposed
method.
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Fig. 2.     Simulation results.
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