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Abstract—This paper presents a novel fixed-time stabilization
control (FSC) method for a class of strict-feedback nonlinear sys-
tems involving unmodelled system dynamics. The key feature of
the proposed method is the design of two dynamic parameters.
Specifically, a set of auxiliary variables is first introduced through
state transformation. These variables combine the original sys-
tem states and the two introduced dynamic parameters, facilitat-
ing the closed-loop system stability analyses. Then, the two
dynamic parameters are delicately designed by utilizing the Lya-
punov method, ensuring that all the closed-loop system states are
globally fixed-time stable. Compared with existing results, the
“explosion of complexity” problem of backstepping control is
avoided. Moreover, the two designed dynamic parameters are
dependent on system states rather than a time-varying function,
thus the proposed controller is still valid beyond the given fixed-
time convergence instant. The effectiveness of the proposed
method is demonstrated through two practical systems.

Index Terms—Dynamic gain feedback control, fixed-time stabiliza-
tion, strict-feedback nonlinear system.

1. INTRODUCTION

IXED-TIME stabilization control (FSC), which can ensure
F system trajectories to converge to zero before a given time
regardless of the initial conditions, has been extensively stud-
ied in the past decades [1]. This kind of control method was
firstly formulated by Polyakov [2] in which the stabilization
problem for uncertain linear plants is considered. It is shown
that FSC can provide fast response speed together with a high
control precision. Meanwhile, FSC is also able to deal with
uncertain disturbances and inherent nonlinear dynamics.
Because of these properties, FSC has been widely used in
many mechanical and electromechanical systems [3]-[7].
The design of FSC can be divided into two categories: the
time-dependent control and the state-dependent control. The

Manuscript received November 14, 2022; accepted December 26, 2022.
This work was supported by the National Natural Science Foundation of
China (61821004, U1964207, 20221017-10). Recommended by Associate
Editor Jiacun Wang. (Corresponding author: Chenghui Zhang.)

Citation: C. H. Zhang, L. Chang, L. T. Xing, and X. F. Zhang, “Fixed-time
stabilization of a class of strict-feedback nonlinear systems via dynamic gain
feedback control,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 403-410,
Feb. 2023.

C. H. Zhang, L. T. Xing, and X. F. Zhang are with the School of Control
Science and Engineering, Shandong University, Jinan 250012, China (e-mail:
zchui@sdu.edu.cn; lantao.xing@sdu.edu.cn; zhangxianfu@sdu.edu.cn).

L. Chang is with the School of Aeronautics and Astronautics, Shanghai
Jiao Tong University, Shanghai 200240, China (e-mail: le@lchang.me).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2023.123408

time-dependent control is also called the pre-specified time
control [8], [9], in which a time-varying function is used to
regulate the converging rate. This function would converge to
zero or infinity at the pre-specified time, causing the converg-
ing rate to be infinite. Although this kind of control can ren-
der system states to converge to zero at any time, the con-
troller becomes invalid after the given settling time. To deal
with this problem, a switching strategy has to be adopted
which complicates the system control design [10], [11].

For the state-dependent control design, various technolo-
gies have been introduced in the existing literature. A hybrid
control algorithm was introduced by combining a finite-time
stabilizing control and a fixed-time attracting control in [2].
To avoid the chattering regimes from hybrid controls, a non-
hybrid control strategy with an involution operation sign was
developed for both linear and nonlinear systems in [12].
Through proposing a condition on a state-dependent function,
Hua et al. [13] proposed a continuous FSC method for nonlin-
ear systems. The implicit Lyapunov functions were intro-
duced in [14] to construct fixed-time observers. Recently, Sun
et al. [15] studied the fixed-time fuzzy tracking control prob-
lem for a class of unknown nonlinear systems. The fixed-time
stabilization problem for linear systems with input delay was
also studied in [16]. However, it should be noted that the con-
trol structures of the aforementioned results all possess com-
plicated forms which are not easy to implement.

The dynamic gain control approach has been widely used to
solve the stabilization problems of nonlinear systems. This
approach is able to cope with system uncertainties with the
desired control performance guaranteed. With the help of
dynamic gain control approach, the stabilization problems
were solved in [17]-[21]. It is shown in [17]-[21] that the
control designed by the dynamic gains has a simple linear
form which can greatly simplify the controller design. This
motivates us to design FSC control method for uncertain non-
linear systems by using the dynamic gain control approach in
this paper. In particular, the main contributions of this paper
are summarized as below:

1) The proposed controller consists of two dynamic parame-
ters and has a simple quasi-linear form. The two dynamic
parameters are delicately designed by utilizing the Lyapunov
method, ensuring that all the closed-loop system states are
fixed-time stable. Compared with existing results, the “explo-
sion of complexity” problem of backstepping control [9] is
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successfully avoided.

2) The designed controller can keep operating beyond the
given fixed-time instant without any control strategy switch-
ing. This is different from the prescribed-time control meth-
ods in [9] and [11], where a time-varying function is
employed to regulate the system performance. Our controller
is particularly useful to cope with the case when the pre-speci-
fied time is not accurately determined.

The rest of this paper is organized as follows: Section II for-
mulates the fixed-time stabilization problem for the strict-
feedback nonlinear system, while Section III details the design
of the control method and analyzes the system performance.
After that, the proposed control method is verified in Section
IV through two actual systems. Finally, Section V gives the
conclusion remarks.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider the strict-feedback nonlinear system
X1 =x2+ fi(x1)

Xy = x3+ falx1,x2)

(M

Xp =u+ fu(x1,x2,...,%,)
where x = (x1,X2,...,x,)T € R" is the system state, and u € R
is the system input. The initial time instant is set as 0, and the
initial system state is denoted as x(0). fi(-) to f,(-) are
unknown nonlinear functions satisfying the following assump-
tion [22], [23].
Assumption 1: For any x = (xy,... , %7 € R%, it holds that

lfiCxr,x2, .., x)l < e (xi] + vl + -+ ]xil) 2

fori=1,2,...,n, where c is a positive constant.

System (1) under Assumption 1 is a typical strict-feedback
nonlinear system which has been widely studied. For example,
its asymptotic stabilization problems have been solved via the
dynamic gain feedback control method [21], [23], [24] or the
backstepping design method [25], [26]. The fixed-time stabi-
lizing problem was also studied in [27]-[29] through back-
stepping design method. This paper will develop a dynamic
gain control method to achieve fixed-time stabilization whose
definition is given below:

Definition 1 (Globally Fixed-Time Stable [2], [30]): Con-
sider

x(1) = g(x(0)) 3)
where x(f) € R" is the system state, and g(-):R" > R" is a
continuous function satisfying g(0)=0. The initial time
instant is assumed as O and the initial state is denoted as
xo € R". System (3) is globally finite-time stable at the equilib-
rium x =0 if it is Lyapunov stable and finite-time attractive,
i.e., there exists a local bounded function T(xp):R" —
R, U{0} such that x(¢;x¢) =0 for all ¢ > T(xy), where x(t;xg)
is the solution of (3) with the initial state xp € R". The func-
tion T'(xp) is called the settling time function. It is said that
system (3) is globally fixed-time stable at the equilibrium
x =0 if it is globally finite-time stable and the settling time
function T'(xp) is globally bounded by some positive constant
Tmax >0, 1.e., T(xp) < Tiax,Vxo € R". The constant Tp.x 1S

called the setting time.

With the above definition in mind, the control objective of
this paper is to design the control signal u such that system (1)
is globally fixed-time stable at the equilibrium x = 0. To this
end, the following two Lemmas are given for the controller
design later.

Lemma 1 ([31]): Let0 <1< 1, and a,b > 0. It holds that

(a+b)y <a"+b". @)
Lemma 2 ([20]): Let a,b,y be positive real numbers, and
7 € (0, 1). Then, the following inequality holds:

Cl2

e

-1, 147 _Ty—%blrr. (5)

< -
- 4 1+7

1+71

III. MAIN RESULTS

A. Control Design
System (1) can be expressed in the matrix form

X=Ax+Bu+ F(x) 6)
where
_ (O@=1)x1 1 ) _(O(n—l) 1)
A‘( 0 O1x(u-1))° B= 1 g )
T
and F(X)=(f1(xl) FHlx1,x2) fn(xlsx2,---’xn)) .
Let

D =diag({1,2,...,n—1,n). 8)

Then, we compute the parameters through the following
algorithm.

Algorithm 1 Static Parameters for the FSC

1 According to [32], find a vector K = (ki,ka,....k,)" € R* which
meets
(A-BK)' P+P(A-BK) < I
PD+DP > 0.
2 Denote «j, @, as the minimum and maximum eigenvalues of
matrix P, respectively;

3 Find a constant t which belongs to the interval (max{l—

2n+2) m, 0}, 1), where Amay () is the maximum eigenvalue of

a matrix;
4 Find a constant f to meet
B2 Amax (2n+2)P~(1-1)(PD +DP)).

It is noted that from Algorithm 1 that the following inequal-
ity holds:
0<@2n+2)P-(1-7)(PD+DP)<pl. )

To make system (1) fixed-time stable, the control input u is
designed as

7 rn—l ’

2 2 2
|——=X1—hk——x— —ky——x (10)
r;l(lf‘r) r&nfl)(lﬂ') ”r}sr n
where ry,r; are the dynamic parameters to be designed. It is
worth pointing out that controller (10) is in a quasi-linear form
which has a simple structure and is easy to implement, com-
pared with existing control strategies using the backstepping
design method.

u=-k
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B. Design of The Dynamic Parameters

Before designing the dynamic parameters, a set of new vari-
ables is introduced as below

Xi .
ZiZT, l=1,2,...,}’l.
’_111 i 1‘1".12

(11)

Let z=(z1,22,...,2z,)7 €R". Then, the dynamics r|, r, are

designed as

. L) . 2
=— +— 1
1 4ﬁr 12 4,8r%_7 m1n{||z|| , }
r 2 12
L Sy |G (12)
2(1’27‘1 T ’,L21+1
0<r1(0) <1, rp(0)>max{8cn||P|,1}

where £ is a constant given in (9), and u € (0,+0) is a con-
stant to regulate the settling time 7.

Now we discuss the dynamics of r|, r;. Because
0<ri(0)<1 and rp(0) > ma)zgj8cn||P||, 1}, one has i, >0 and
thus r,(¢) > 1. When ry > ||z||#T, we 2have i =0 so that r, con-

u )
verges to a constant. When r, < ||z||#+1, since it holds

2 2

7 H
_on (el ),

Za,zrl—'r ’}H—l

ry keeps i 1ncreas1ng towards ||z||#+1 Therefore ry is increasing

(13)

to approximate ||z||/l+l when ry < ||z||#+1
For the dynamic r|, when ||z|| > 1, it holds

r21

485 27< _1)

i1 = (14)

It can be seen that the equlhbrlum is 1 = 1. Thus, we can
deduce into r(?) € (0,1] from r;(0) € (0,1]. When ||z]| < 1, we
have

s
i" = —|1Z] 15
1= - [El®) (15)
which means r; converges towards ||z||. Therefore, r| € [0, 1]
always holds.

C. Stability Analysis

With the above controller and parameter dynamics given,
we are ready to present the following theorem.

Theorem 1: Consider system (1) under Assumption 1. If the
controller u is designed as (10) with the dynamic parameters
ri,ry given by (12), in which the vector K, matrix P, and con-
stants a, @y, f, T are determined by Algorithm 1, then system
(1) is globally fixed-time stable with a settling time 7 for any
initial state x(0). Moreover, the settling time 7 satisfies

B % +1
p(1-1) a u

( 147 )% 1
a-n) oI5 LI (0
4(1+T)a 2Bz

Proof: Consider the variable z = (z1,z»,...
defined in (11). Then, we have

where p = min{

,zn)! with z; to z,

17)
"

where the matrices 4 and B are given in (7), D} = (n+ 1)I — (1—

D, Dy =D, andF_( AO [

rn+‘r rl+n'rrn
From (9), it can be obtained that P meets the following con-
ditions:

P(A-BK)+(A-BK)TP<-I
0<PD+DP<BI
PD>+D>P >0

al <P<Lal.

(18)

Let V =z Pz. Then its derivative along with (17) can be
computed as

Viaz = —=2" (P(A- BK)+(A- BK)" P)z

1

Moy
—L7(PDy + D, P)z
r

_2.T(pD, + DyP)z+2: PE. (19)
rn

It can be seen from (12) that 7| > —#r{rz, in >0, ri(t) >0,
and r,(¢) > 1. Thus, we have

ZI(PD; + D, P)z

Vign < -

)
ﬂ 1 -7
+2'PF

3 -
~ 2|l + 2" PF.
1
Following Assumption 1, the nonlinear term £ satisfies:

(20)

mﬁ(xl,xz, x;)
|x1] X2 |l
- +1—i+it i +1—i+it i n+1—i+it 0
" roon " " )
i-1)(1-7 i-2)(1-7
U T
<c - c - + - +clzi
rz—l rl—2
2 2

< clzy|+clza| + -

< cnllzl @n
which indicates ||F|| < cnl|z||. Combining (20) and (22) yields

+clzil

. 3r
wms—4leﬂmmww

r
2(n||P||

2
(=]

1

2
<= =kl

2r 1 -7 (22)
where r(f) > r(0) > 8cn||P|| is employed.

The following proof is divided into four parts. Part I shows
the fixed-time attractivity of z, while the fixed-time conver-
gence of z is guaranteed in Part II. The fixed-time conver-
gence of x is derived from the dynamic of z in Part III, and the
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upper bound of the settling time 7 is estimated in Part IV.

Part I: Fixed-Time Attractivity of System (17)

In this part, we show that for any initial condition z(0) € R",
z(t) will converge to a neighbourhood Q = {z | llzIl> < 1} before
a given time T.

Consider w = % If ry <|lz||#+1, rp in (12) satisfies

2 2
r u
B S i o)
20/2;’ T r’2‘+
and
V o
w:——%v
n ry
1 2u
B e
2(1/2r{_T y~‘2‘+l
1 ny
B P v o
2(1/2r - ’;24 rn
where ||z]|> > £ ~ is utilized.
If r22||z||#+1, then rp in (12) satisfies i, =0. Thus r,

becomes a constant, and the derivative of w is

P v

1 1
<_
Tr‘”l’z

< 25
T 2&2}"1 )

2a/2r1

To conclude, whether r, < ||z||!m or rp > IIZIIW, it can be
deduced from (24) and (25) that

1 ny
< _ lIIl v (26)
2a/2r - 1}21 r
Since ry € [0, 1], one obtain @ < — o/‘*‘ w1 and
1
W) <|———| . wO®>0
M,
o) 20/;1
w(f) =0, w(0) =
20}44—1
When ¢ > , it holds w(f) < 1. Back to (22), we obtain
Vian < —SIEIPV < —=— V2 @7)
n="3 = 2ap
2(1/”1
If V(——) # 0, one can get
1
V() < 1
a,ll‘#
7 * 2 (= =)
V( )
and
1
DI < e
7 + 505 (= =)
V( )
2a}é+l

Therefore, when > Ty = 2(%2 +

, z(t) will be in the
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neighborhood Q, ie., [z(0)I> <1, Vt>To. Meanwhile, by
noticing rp > 1, after the time instant T, it holds that 7 (f) =0
which means r, () will converge to a constant when ¢ > T.
Part II: Fixed-Time Stability of System (17)
From Part I, we have |z(¢)|| < 1 for > Ty. This part will
show that under this condition, a time instant 7 can be found

which guarantees z(f) =0 for any ¢>T7. Since ”'il% -1<0

holds, the parameter r, becomes constant. As a zresult, the
parameter ry satisfies

. n 2
7= 4Br1r2+ 1 2_T||z|| . (28)
Lettingw =V + Erl , its derivative can be computed as
. l+7 n 2
&< - —r1 rot el
1 2 1 1+7
< - 4r}—f”Z” -3 (29)
where r; > 1 is employed. 1
Employing Lemma 2 and choosing y = (2(112))‘7 , we can
get
R I P (T o Vil
- ll2ll° < ===zl + ——=——r""
gl 4(1+71) 4(1+7)
Then, from (29) we can obtain
1 |
&< — iy_IVIT < }+T
4(1+1)a,”
%
B (30)
where p = min 1 Tir 7_], 5 ! Tor (-
4(1+1)a, % 27
Employing Lemma 1 to (30) gives
B> iz
w<—p(V+= r1)2 < —pw 2 (31
Then, it holds
2
e, -7 t=r
() <\@ 2 (To) - ——p(t=To) (32)
for te€[Ty,T]. Therefore, w(®)=0 when ¢>T =Ty+
wlzi(To)ﬁ. This can be further deduced into
lim |lz(®)|| =0, limr(¢) =0. (33)
t—T t—»T

Thus, at the time instant 7, ||z(#)|| and r1(#) converge to zero.
Part III: Fixed-Time Stability of System (1)
From the definition of z in (11), it holds

n+t

X1 =11 nz
x=rl" 1+27r§zz
(34)
14+nt_n
Xn =1 yZp.
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Meanwhile, from (22), we have

1 1
Iz < — V() < —V(0). (35)
aq aq
The parameter r, can be estimated as
2,
Fa(t) < max{ max [Z(s)[1#, r2(0)}
5€[0.T]
e
1 p+l
< max {(— V(O)) , rg(O)} . (36)
aq

Therefore, following (33) and (37) yields:
lim [lx(#)[| = 0.

Moreover, under the new variable z = (z,z,...,2,)7, the
control signal « can be expressed as

u(t) = —rE"H)TrgHKZ. 37

As ri, r and z are all bounded, thus u is bounded all the
time. Moreover, from (34) we have lim,_,7 ||z(t)|]| = 0.
It can also be seen that

Ix(®)I* < r3"|z(0)]I?

2nu

<1 max ((ILV(O))W,@"(O) V).  (38)
1

@]

As V(0) is determined by the initial state [|x(0)|| and r»(0) is
chosen by the designer, we can conclude that the upper
bounded of ||x(¢)|| is governed by the initial system state x(0).

Part IV: Estimation of the Settling Time

As discussed above, the FSC introduced in this paper con-

tains three stages. The lﬁrst stage is to ensure w(f) < 1, which
+

happens when ¢ > ; . Then, under the condition w(f) <1,
. 2(1’U+l
we can get ||z(#)|| < 1 when > Ty with Ty = 2(%+/+ At

last, from ||z(?)|| < 1, it holds that w(f) =0 when t > T with
1-7
T=To+w 2 (To) 72

Since @w(Ty) < ap + 'g, we have
1-7
Aa+5) T 20y 205"

p(l-1) g H
which is not dependent on the system initial conditions.
Therefore, the designed controller (10) and (12) can render
system (1) globally fixed-time stable. [ ]

Remark 1: Our control strategy does not suffer from the sin-
gularity problem. It can be seen from (13) that ||z||, i.e., |||,
converges to zero before r; does. Therefore, even though r;
tends to zero, the singularity problem for the control signal u
does not happen. Indeed, it is proved in Theorem 1 that the
control signal is always bounded and converges to zero in the
end.

Remark 2: Our proposed control method is essentially dif-
ferent from the prescribed-time control methods in [9] and
[11] in the following aspects: 1) Our considered system model
is more general than the counterparts in [9] and [11]. Specifi-
cally, the system model in [9] contains nonlinear dynamics
that exist only in the last differential equation, while the sys-

T<

(39)

tem model in [11] has no nonlinear dynamics; 2) The control
action of our method does not have to terminate at the pre-
specified time instant 7" while the methods in [9] and [11]
must. This is because [9] and [11] adopt a monotonically
increasing function to achieve prescribed-time control. This
function is only valid in the time interval [#y,#o + T'), thus the
control method becomes invalid when ¢ >t + 7. By contrast,
our method does not need the above function and thus it keeps
valid all the time. This property is particularly useful to cope
with the case when the time instant 7 is not accurately deter-
mined.

IV. SIMULATION RESULTS

In this paper, we present two simulation examples to verify
the effectiveness of our proposed method.

Example 1: Consider the one-link manipulator system given
in [33]

D¢+ Bg+ Nsin(q) =7,
{61 q (q) (40)

Mt,+Ht, =u—-K,q

where ¢, ¢, ¢ are the link position, velocity and acceleration,
respectively. 7, is the torque produced by the electrical sub-
system. u is the control input representing the electromechani-
cal torque. D is the mechanical inertia, B is the coefficient of
viscous friction at the joint, N is a positive constant related to
the mass of the load and the coefficient of gravity, M is the
armature inductance, H is the armature resistance, and K, is
the back electromotive force coefficient.

Denoting x; = MDq, x; = MDg and x3 = Mt,, (40) can be
transformed into

X1 =x2

Xy = x3+ folx1,x2)

X3 =u+ f3(x2,x3)
where fz(xl,)Cz) = —%XQ —MNsin(%), f3()C2,)C3) = —%XQ—
%X}

For simulation, the system parameters are set as
D=5kg-m?> N=02, M=05H, K, =0.05N-m/A, B=
0.2N-m-s/rad, and H = 0.02 Q. It can be verified that Assu-
mption 1 is satisfied with ¢ = 0.04. Then, the control parame-
ters are set as ky =2, kn=6, k3=3, 7=1/2, 8=20.7,
a1 =0.2, ay =5, u=3. In particular, according to Theorem 1,
the controller for this one-link manipulator system is designed
as

(41)

3 1
_ 373 2 -1 -2
u=-2ryr *xi —6ryr] X2 — 3rar; * x3 (42)

where ry, rp are the dynamic parameters designed as

. 11 o
== rir+ — min {|lz|%, 1}
AT 400712
r 6 43
= 2 - max @—1,0 (43)
2x5r] "
r1(0)=0.9, r(0)=2.62

z s o\
with z = (x1/(i’12 ), x2/(rir3), x3/(r} rg)) .
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The simulation results are presented in Fig. 1. It is observed
that the system states x, xo and x3 converge to zero before the
instant 7'= 4 s. Meanwhile, the dynamic parameter r| remains
in the interval [0, 1] and converges to zero, while r, increases
to about 3.4 and then remains the same. The control signal u is
also bounded and converges to zero. Moreover, it can be seen
that the closed-loop system can still operate beyond the time
interval [0,4], which cannot be achieved through the pre-spec-
ified finite-time control method in [9] and [11].

20 X1l
S 10t %
3 )
w 0 -}— i
710 L I n 1
0 2 4 6 8 10
1.0

s 50}
—100

0 2 4 6 8 10
Time (s)
Fig. 1. Simulation results for closed-loop system (41)—(43) with initial state
x(0) = (-6,3,25)T.

Example 2: In this example, we consider a more complex
robotic manipulator coupled to a DC motor to further confirm
the effectiveness of our proposed method. The system model
[34] is given as below

. . 2
J1g1+F1g1+K(q1 —- qﬁ)+mgd005611 =0

Do + Fado = (a1~ ) = Ki “44)
Li+Ri+Kbé]2 =u

where the physical meanings of the relevant parameters are

displayed in Table I. To facilitate the controller design, the

following coordinate transformation is introduced:

X1 =41
X2 =41
K mgd
= ——¢gy— ——COs
X3 J1Nq2 7 (q1)
K .
X4= ——
4 J1Nq2 (45)
KK, . mgdK
X5 = 1— cos(q1)
J1hoN J1JaN?
dR
u= n;iN cos(qy)+u”.

TABLE1
EXPLANATION OF PARAMETERS

Parameters Physical meanings
q1 Angular position of the link
q2 Motor shaft
m Link mass
Acceleration of gravity
i Armature current
L Armature inductance
R Armature resistance
Armature voltage
d Position of the link’s center of gravity
Gear ratio
K, Back EMF constant
K Spring constant
K; Torque constant
Ji,J» Inertias constants
Fi, F» Viscous friction constants

Consequently, we have
X1 =X
Fi K

Xp=x3— Fo2T
1 1

mgd
X3 = x4+ Ji)Q sin(xp)
1

(46)
_ F . K2 K
X4 =X5— —X4+——=X|———=X
A VAV R VO
R K, K; mgdKxsin(x;) K Ku*
X5 =— —X5— 4 5 .
L JoL J1LN J1JoNL

For the sake of simulation, the system parameters are cho-
sen as Fi=F,=1N-m-s/rad, Ji=J,=1 kg-mz, K =
lkgf/mm, N=1, R=1Q, L=1H, K,=1V/rad/s, K; =
IN-m, g=10 m/s%, m=0.5 kg, and d =0.2. The system’s
initial condition is set as x(0) = [x1(0), x2(0), x3(0), x4(0),
x5(0)] =[1,1,1,1,1,1], and [r1(0),2(0)] = [1,1].

The control objective is to stabilize system (46). It can be
verified that (46) satisfies Assumption 1, thus our control
method can be applied. To show the effectiveness of our pro-
posed method, we also compare our method with the one in
[34]. The control parameters of our method are set as k; = 6,
ky=ks=5, k3=8.5, kg=10, =20.7, 7=0.5, a;=0.2,
ay =5, and u =3, while the parameters of [34] remain the
same as those given in the simulation examples of [34].

The simulation results are presented in Fig. 2. As can be
observed, the system’s angular with our method converges to
zero with a faster speed than the one in [34]. Moreover, the
amplitude of our control signal is also significantly smaller.
This clearly demonstrates the advantage of our proposed
method compared with the one in [34].

V. CONCLUSION
This paper has proposed a dynamic gain control method to
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Fig. 2. Simulation results.

solve the fixed-time control problem for a class of strict-feed-
back nonlinear systems. The considered systems can describe
a large class of practical systems with unmodelled dynamics
satisfying a linear-growth condition. To handle the unmod-
elled system dynamics, two auxiliary parameters are deli-
cately designed. Our design method yields a quasi-linear con-
troller which ensures that the closed-loop system is fixed-time
stable. Compared with existing results, our proposed method
avoids the “explosion of complexity” problem caused by con-
ventional backstepping control. Moreover, the designed con-
troller can keep operating beyond the given fixed-time instant
without any control strategy switching, which is superior to
the conventional prescribed-time control. Two simulation
examples have verified the effectiveness of our proposed
method.
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