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Abstract
This article aims to design a low gain feedback controller for a class of
discrete-time feedforward nonlinear systems (DFNSs) with unknown input sat-
uration. Although the design of the low gain feedback control can be converted
into the choosing of a parameter, it is difficult to design the control due to the
inherent nonlinear dynamics and the unknown input constants. To solve this
problem, we first show that the low gain feedback control can be found to stabi-
lize the DFNSs when the saturation is known. Then, by analyzing the dynamics
of DFNSs under the saturating input, the relation is built between the parameter
and the system state. Finally, we introduce a technology to update the param-
eter based on different performance, whose effectiveness is illustrated through
considering a numerical example.
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1 INTRODUCTION

The feedforward nonlinear system represents a special class of nonlinear systems, and many results have been devoting to
its control problems. This is due to some physical devices in feedforward dynamics, such as “cart-pendulum” system, the
“ball and beam” with a friction term. Another key aspect is that, from a theoretical point of view, the feedforward systems
are in general not feedback linearizable, which present some challenges to design stabilizing control. In this way, the last
decades have been developing various technologies, such as the saturation-based method,1,2 forwarding method,3 and the
low gain feedback control method4-9 to stabilize the feedforward nonlinear systems. However, most of these works on this
subject are concerned with continuous-time systems. The corresponding results on discrete-time feedforward nonlinear
systems (DFNSs) have been really lagged.

Due to the Lyapunov equation is in different forms between the discrete-time case and the continuous-time case, the
stabilization of DFNSs presents new challenges. The DFNSs can be derived by integrating the continuous-time equations
with Brunovsky structure or feedforward structure. But compared with other results on discrete-time systems,10,11 lit-
tle results are focusing on the discrete-time system in feedforward forms. Early stabilization problem was focusing on
the case when the nonlinearities were governed by a stabilizable condition.12,13 A recent work was developing the sat-
uration methodology to design the stabilizing controller when the system nonlinearities satisfied the quadratic growth
condition.14 It is noticed that the low gain feedback control method is one of the dominating technologies in the study of
continuous-time feedforward nonlinear systems. The low gain feedback control method can design a proportional con-
trol, which is easy to be implemented in practical systems. Furthermore, due to its simple form, the parameter is easy
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to be turned, and the turning mechanism is easy to understand. The low gain feedback control was designed to stabilize
feedforward nonlinear system,4,6 followed by the key contributions developed into various forms for specific control prob-
lems.5,7,15,16 It should be mentioned that the sampled-data controller was designed for the feedforward nonlinear systems
based on the low gain feedback control.17 And the discrete-time low gain feedback control was developed for linear sys-
tems.18-20 But, for directly analyzing the DFNSs, the low gain feedback control has not been developed, which remains
an open subject.

The saturating control is closely related to the low gain feedback control. For a continuous-time feedforward nonlin-
ear system, the stabilizing control was designed through initiative introducing the saturating terms.1,2 In some scenarios,
the input saturation is required by the physical devices,21 and the constraints may not be given precisely. The designed
low gain feedback control may not pass the saturating restrictions, which degrades the effectiveness. An approximating
function was introduced to estimate the saturating constraints, and then the control was designed based on the estima-
tion.21-23 Since the low gain feedback is not allowing larger changes,15 how to design the low gain feedback control to
dominate the unknown saturation?

In this article, we are going to design the low gain feedback control for the DFNSs whose nonlinear terms are governed
by an input-depended growth condition. The growth rate can be the function of the input, which brings difficulties to the
design. Meanwhile, the input saturation is considered, but the bounded is assumed as unknown. The key to this objective
is to consider the three tasks: (i) Is there a low gain feedback controller to stabilize the DFNSs? (ii) How to update the
control gains such that the control can pass the unknown saturation restrictions?, and (iii) How to evaluate the system
performance and terminate the updating process? The contributions can be summarized as below:

• The DFNS will be stabilized by providing a low gain feedback control. The considered nonlinear terms have an
input-depended growth rate, which is different from the existing system.14 We employ the low gain feedback control
technology to study the DFNSs, and the analysis is different from the continuous Lyapunov theory-based framework.
Thus, exploring the low gain feedback control for DFNSs is different from the existing works.

• The low gain feedback control is studied with respect to the unknown saturation restrictions. Although the input
saturation is closely related to the low gain feedback control, the unknown restrictions make the design more difficult.
Through analyzing the system dynamics, we build the estimation for the system evolution, and give a new policy to
update the control parameter.

• A new framework is provided to update the control parameter. The low gain feedback control was updated adaptively,5
or improved as the time-varying control.15 Different from the existing results, we introduce a new framework to update
the parameter and evaluate the performance to determine whether the parameter is needed to be updated.

The remainder of this article is organized as follows. We will describe the problem in Section 2. The low gain feedback
control will be designed in Section 3 when the saturation is not happen, and Section 4 will present an improved low gain
feedback control to dominate the unknown saturation. The numerical example is going to illustrate the main results in
Section 5. Some ending remarks will be summarized in Section 6, while a reference list will end this article.

Notations: We employ || ⋅ || to denote the Euclidean norm for vectors, or the induced Euclidean norm for matrices.
The notation ⌈x⌉ gives the greatest integer which is less than or equal to x. For matrix P, PT represents its transpose, and
𝜆max(P), 𝜆min(P) denote the largest eigenvalue and the smallest eigenvalue of the matrix P, respectively. We use I to denote
an n × n identity matrix.

2 PROBLEM FORMULATION

2.1 The system description

The studied DFNS is represented as

x1(k + 1) = x1(k) + p1x2(k) + f1(x(k),u(v(k))),
x2(k + 1) = x2(k) + p2x3(k) + f2(x(k),u(v(k))),

⋮

xn(k + 1) = xn(k) + pnu(v(k)) + fn(x(k),u(v(k))), (1)

 10991239, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6502 by L

e C
hang - Shanghai Jiaotong U

niversity , W
iley O

nline L
ibrary on [12/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2080 CHANG and FU

where x = [x1, x2, … , xn]T ∈ Rn is the system state, v ∈ R is the system input to be designed, and u(v) denotes the input
subject to saturation nonlinearity described by

u(v) = sat(v) =

{
sign(v)umax, |v| ≥ umax,

v, |v| ≤ umax,

where umax is an unknown parameter of input saturation. Without loss of generality, constants p1, p2, … , pn are assumed
to be positive. The initial index is assumed as 0, and the initial system state is x(0) ∈ Ω with Ω being a closed set in Rn.

Remark 1. The constants p1 to pn can be any nonzero constant. When some of them are negative, we can make a state
change to ensure they be positive. For example, consider pi is the first negative number (p1 to pi−1 is/are positive), then
we define a new state x̃i+1 = −xi+1 (xn+1 = v), and get a positive coefficient −pi. Thus, we can assume all constants p1 to
pn are positive.

The functions f1(⋅), f2(⋅), … , fn(⋅) are continuous, and satisfy the following assumption.

Assumption 1. For any x = [x1, x2, … , xn]T ∈ Rn, u ∈ R, it holds

|fi(x,u)| ≤ 𝜙(u) (|xi+2| + |xi+3| + · · · + |u|) , i = 1, 2, … ,n − 2,

where 𝜙(u) is an unknown continuous function with respect to u. Additionally, it holds |fn−1(x,u)| ≤ 𝜙(u) |u| and
fn(x,u) = 0.

Remark 2. System (1) is in the feedforward form, which contains the linear part and the nonlinear part. If we do not
consider the nonlinear part, that is, fi = 0, it is the integrator system.24 The nonlinear terms satisfying Assumption 1 has
an input-depended growth rate, which was similarly considered for the continuous-time systems.5 For the DFNSs, it was
studied14 when the nonlinear function fi satisfies |fi| ≤ M(x2

i+1 + · · · + x2
n) in a given neighborhood |xj| ≤ 1, j = i + 1, … ,n

for a constant M. This is essentially different from Assumption 1. Thus, the control problem of system (1) has not been
solved before.

2.2 The low gain feedback control

To stabilize system (1), a candidate control can be expressed as

v(k) = −k1
x1(k)

hn − k2
x2(k)
hn−1 − · · · − kn

xn(k)
h

, (2)

where k1 to kn are chosen later. Parameter h ≥ 1 is a constant to be determined.
The controller (2) is parameterized by the parameter h. This control is called as the low gain feedback control, since

it goes to zero as the parameter h increases. Although the low gain feedback control was initially proposed25 to solve the
semi-global stabilizing problem for systems subject to input saturation, it has not been employed to control the DFNSs
with unknown saturation. To determine the parameter h, we employ the following lemma about the constants h1 to hn
to analyze the system convergence.

Lemma 1 (5,6). Let

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 p1 0 · · · 0
0 0 p2 · · · 0
⋮ ⋮ ⋮ 0
0 0 0 · · · pn−1

0 0 0 · · · 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
⋮

0
pn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3)

There exists a positive definite matrix P ∈ Rn×n, a vector K = [k1, k2, … , kn] ∈ Rn, and a positive constant 𝛼 such that

(A − BK)TP + P (A − BK) ≤ −𝛼P. (4)
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CHANG and FU 2081

Remark 3. This lemma is based on the continuous Lyapunov equation (4). But, we will show that the control of the
discrete-time system (1) can also be designed through this equation.

2.3 The problem to be addressed

With the help of notation A,B in Lemma 1, we rewrite the closed-loop system (1) and (2) as

x(k + 1) = (I + A) x(k) − Bu(K(h)x(k)) + F (k) , (5)

where

K(h) =
[

k1
1

hn , k2
1

hn−1 , … , kn
1
h

]

, F (k) =
⎡
⎢
⎢
⎢
⎣

f1 (⋅)
⋮

fn (⋅)

⎤
⎥
⎥
⎥
⎦

.

Our problem in this article is to find the constant h such that the state of the closed-loop system (5) satisfies

lim
k→+∞

‖x(k)‖ = 0.

To continue, since 𝜙(u) is a continuous function on a closed set [−umax,umax], we can re-express Assumption 1 as below.

Assumption 1*. For any x = [x1, x2, … , xn] ∈ Rn, u ∈ R, there exists an unknown constant 𝜙 such that

|fi(x,u)| ≤ 𝜙 (|xi+2| + |xi+3| + · · · + |u|) , i = 1, 2, … ,n − 2,

|fn−1(x,u)| ≤ 𝜙 |u| , fn(x,u) = 0,

hold.

3 SEMI- GLOBAL STABILIZATION WITH KNOWN SATURATION

In this section, we show that for any initial state x(0) ∈ Ω, the parameter h can be found to get the stabilizing control (2).
Consider the state transformation

z1(k) =
x1(k)

hn , z2(k) =
x2(k)
hn−1 , … , zn(k) =

xn(k)
h

, (6)

and we can get

z1(k + 1) = z1(k) + p1
1
h

z2(k) +
1

hn f1(x(k),u(k)),

⋮

zn(k + 1) = zn(k) + pn
1
h

u(k) + 1
h

fn(x(k),u(k)).

Consider the control v(k) can pass the saturation, and we can express the control u(k) in (2) as

u(k) = −Kz(k), (7)

where z = [z1, z2, … , zn]T . Then, following the notation in (3), the closed-loop system (5) can be rewritten as

z(k + 1) =
(

I + 1
h

A − 1
h

BK
)

z(k) + F̃(k), (8)

where F̃(k) =
[

1
hn f1(x(k),u(k)), … ,

1
h

fn(x(k),u(k))
]T

.
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2082 CHANG and FU

Since h is a constant, the convergence of system (8) is equivalent to that of system (5). Thus, the following in this
section is to analyze system (8), and we summarize the main result as below.

Theorem 1. Let Assumption 1 holds and umax being known. For any initial state x(0) ∈ Ω, there exists a constant hmin such
that if the parameter h in (2) satisfying h ≥ hmin, the state of closed-loop system (5) converges to 0, that is

lim
k→+∞

||x(k)|| = 0.

Proof. We first analyze the case when v(t) ≤ umax. After the state transformation (6), the closed-loop system (1), (7) can
be rewritten as system (8).

Consider the Lyapunov function V = zTPz, where P is the positive definite matrix given in Lemma 1. Then, we can get

V(k + 1) − V(k)
= zT(k + 1)Pz(k + 1) − zT(k)Pz(k)

=
((

I + 1
h

A − 1
h

BK
)

z(k) + F̃(k)
)T

P
((

I + 1
h

A − 1
h

BK
)

z(k) + F̃(k)
)

− zT(k)Pz(k)

= 1
h

zT(k)
(
(A − BK)TP + P(A − BK)

)
z(k) + 1

h2 zT(k)(A − BK)TP(A − BK)z(k)

+ 2zT(k)
(

I + 1
h

A − 1
h

BK
)T

PF̃(k) + F̃T(k)PF̃(k)

≤ −𝛼 1
h

zT(k)Pz(k) + 𝛽1
1
h2 zT(k)Pz(k) + 2||P|| (||I|| + ||A − BK||) ||z(k)||||F̃(k)|| + ||P||||F̃(k)||2, (9)

where 𝛽1 is a constant satisfying (A − BK)TP(A − BK) ≤ 𝛽1P, 𝛽1 > 0.
Since umax is known, and Assumption 1* holds with 𝜙 being known. Then, when h ≥ 1, it holds

|
|
|
|

1
hn+1−i fi(x(k),u(k))

|
|
|
|
≤
𝜙

h2 (|zi+2(k)| + · · · + |zn(k)| + |Kz(k)|) ≤ 1
h2𝜙

(√
n + ‖K‖

)

‖z(k)‖ ,

for i = 1, 2, … ,n − 1 and fn(x(k),u(k)) = 0. Thus, we can get

‖
‖F̃(k)‖‖ ≤

1
h2𝜙

(

n + ‖K‖
√

n
)

‖z(k)‖ .

Substituting the above inequality into (9) can get

V(k + 1) − V(k) ≤ −
(

𝛼h − 𝛽1 − 𝛽2𝜙 − 𝛽3𝜙
2) 1

h2 V(k),

where 𝛽2 = 2 ||P||
𝜆min(P)

(||I|| + ||A − BK||)
(

n + ‖K‖
√

n
)

, and 𝛽3 = ||P||
𝜆min(P)

(

n + ‖K‖
√

n
)2

.

Thus, by choosing h′ = 2
(

𝛽1 + 𝛽2𝜙 + 𝛽3𝜙
2) 1

𝛼
, we can calculate to get

V(k + 1) − V(k) ≤ −𝛼 1
2h

V(k). (10)

Then, it holds

V(k) ≤
(

1 − 𝛼 1
2h

)k
V(0). (11)

Now, we need to design h such that |v(k)| ≤ umax. Let

hmin ≥ max
{

h′, rΩ ‖K‖ 1
umax

𝜆max(P)
𝜆min(P)

}

,
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CHANG and FU 2083

where rΩ is the constant satisfying ||x|| ≤ rΩ for all x ∈ Ω. The constants 𝜆max(P) and 𝜆min(P) are, respectively, the
maximum and minimum eigenvalues of matrix P.

Because |v(k)| ≤ ‖K‖ ‖z(k)‖, and ‖z(0)‖ ≤ 1
h
‖x(0)‖, we can get |v(0)| ≤ umax. Thus, it holds V(1) ≤ V(0), which means

‖z(1)‖ ≤ 𝜆max(P)
𝜆min(P)

‖z(0)‖ ≤ umax

‖K‖
.

Then |v(1)| ≤ umax. We repeat this process, and get |v(k)| ≤ umax for any k.
Back to (11), we can get

lim
k→+∞

V(k) = 0.

Since h is a constant, we can get the convergence of x(k). This ends the proof. ▪

Remark 4. The peaking phenomenon can happen in the study of DFNSs. It is noticed that the relation between x(k) and
V(k) can be expressed as

1
h2n 𝜆min(P)||x(k)||2 ≤ V(k) ≤ 1

h2 𝜆max(P)||x(k)||2.

From (11), we can get

||x(k)||2 ≤ h2n−2
(

1 − 𝛼1
1

2h

)k 𝜆max(P)
𝜆min(P)

||x(0)||2.

Thus, for a constant h ≥ hmin, the convergence ||x(1)||2 ≤ ||x(0)||2 may not be established. But when k is large enough,
such as

k ≥
⎡
⎢
⎢
⎢
⎢

ln
(
𝜆min(P)
𝜆max(P)

1
h2n−2

)

ln
(

1 − 𝛼 1
2h

)

⎤
⎥
⎥
⎥
⎥

+ 1,

condition ||x(k)||2 ≤ ||x(0)||2 can be guaranteed. This relation will be utilized in the next section.

4 GLOBAL STABILIZATION WITH UNKNOWN SATURATION

When the saturation constrain umax and the initial condition Ω are unknown, the constant h cannot be determined in
Theorem 1. We try to determine the parameter h through data-driven scheme. The control (2) is improved as

v(k) = −k1
x1(k)
hn(k)

− k2
x2(k)

hn−1(k)
− · · · − kn

xn(k)
h(k)

, (12)

where k1 to kn are the same elements given in (2), and the dynamic parameter h(k) ≥ 1 is to be designed.
Under the candidate control (12), the closed-loop system is turned into

x(k + 1) = (I + A)x(k) − Bsat (K (h(k)) x(k)) + F(k), (13)

where K(h(k)) =
[

k1
1

hn(k)
, k2

1
hn−1(k)

, … , kn
1

h(k)

]

.
For the system state x(k), we have the following estimation.

Theorem 2. Supposed that Assumption 1* is satisfied. There exists constants 𝜌, 𝜏 such that the state of system (13) satisfies

‖x(k + 1)‖ ≤ 𝜌 ‖x(k)‖ + 𝜏. (14)
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2084 CHANG and FU

Proof. From (13), it holds

‖x(k + 1)‖ ≤ ‖(I + A)‖ ‖x(k)‖ + ‖B‖umax + ‖F(k)‖ .

From Assumption 1*, we can get

|fi(⋅)| ≤ 𝜙 (|xi+2| + · · · + |xn+1| + umax) ≤ 𝜙
√

n ‖x‖ + 𝜙umax

for i = 1, 2, … ,n − 1 and fn = 0. Then, we can achieve

‖F(k)‖ =
√

f 2
1 + f 2

2 + · · · + f 2
n ≤ n𝜙||x(k)|| + 𝜙

√
numax.

Thus, it holds
‖x(k + 1)‖ ≤

(

‖(I + A)‖ + n𝜙
)

‖x(k)‖ + ‖B‖umax + 𝜙
√

numax.

Noticed that constants 𝜙 and umax may be unknown, but we know there are constants 𝜌, 𝜏 meeting (14), which ends the
proof. ▪

Let

z1(k) =
1

hn(k)
x1(k), … , zn(k) =

1
h(k)

xn(k),

and in this new set of coordinates z = [z1, z2, … , zn]T , one can show that the input (12) is expressed as

v(k) = −Kz(k).

The estimation of the input can be given as

|v(k)| ≤ ||K||||z(k)|| ≤ 1
h(k)

||K||||x(k)||. (15)

To make the input v(t) pass the saturation constrain, we desire the dynamic gain h(k) is larger than the state ||x(k)||.
And after the input v(t) pass the saturation constrain |v(k)| ≤ umax, we hope the dynamic gain h(k) to be a large constant,
which has been shown in Theorem 1 to stabilize the DFNS (1). Thus, by choosing the rate 𝛾 > 0, the parameter h(k) can
be updated through the following policy

h(k + 1) = h(k) + 𝛾 max
{
||x(k)||2, 1

}
.

Denoting H(k) = diag
{

1
hn(k)

, … ,
1

h(k)

}

, and let

V j
i = xT(i)H(j)PH(j)x(i), for i, j = 0, 1, 2, 3, … .

It is noticing that the h(k) is accepted at k, which means that the evaluation (10) can be achieved. That is

V k
k+1 ≤

(

1 − 𝛼 1
2h(k)

)

V k
k .

Thus, the updating policy is summarized in Algorithm 1.

Theorem 3. Supposed that Assumption 1* is satisfied. Consider system (1) under control (12). If the dynamic parameter
h(k) is updated through the Algorithm 1, the system state x(k) satisfies

lim
k→+∞

||x(k)|| = 0, (16)

and h(k) is converging to a finite constant.
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CHANG and FU 2085

Algorithm 1. Update h through performance V∗
∗∗

Initialize:
h(0) ≥ 1, k = 0, 𝜏 > 0.

while True do
if V k

k+1 ≤ (1 − 𝛼
1

2h(k)
)V k

k then
h(k + 1) = h(k)

else
h(k + 1) = h(k) + 𝛾 max

{
‖x(k)‖2

, 1
}

end if
k ← k + 1

end while

Proof. If there exists a finite instant T such that k ≥ T,

V k
k+1 ≤

(

1 − 1
2h(k)

𝛼1

)

V k
k ,

and

V T−1
T >

(

1 − 1
2h(T − 1)

𝛼1

)

V T−1
T−1

holds. Then, from Algorithm 1, we can get

h(k) = h(T), V k
k+1 ≤

(

1 − 1
2h(k)

𝛼1

)

V k
k .

It is easy to deduce into V k+1
k = V k

k = V T
k , and we obtain

V T
k ≤

(

1 − 1
2h(T)

𝛼1

)k−T

V T
T ,

which yields limk→+∞ V T
k = 0. Thus, we can get (16), and h(k) is converging to a constant h(T).

Now, we prove that the finite instant T can be found for any saturating constrain umax. If v(k) pass the saturating
constrain, from Theorem 1, there exists a constant h′ such that when h(T) ≥ h′, we have V k

k+1 ≤
(

1 − 1
2
𝛼h−1(k)

)

V k
k , k ≥ T.

Let us consider the saturating constrain |u(v(k))| ≤ umax, k ≥ T. From the estimation (15), to ensure the input v(k) can
pass the saturating constrain, we need

||x(k)||
h(k)

≤
umax

||K||
.

Since h(k + 1) = h(k), V k
k+1 ≤

(
1 − 1∕2𝛼h−1(k)

)
V k

k , we consider the peaking phenomenon and get

|v(k)| ≤ ||x(k)||
h(k)

||K|| ≤

√

𝜆max(P)
𝜆min(P)

||x(T)||
h(T)

||K||, k ≥ T.

Thus, our problem turns to show that there exists a finite index T to meet

h(T) ≥ max
⎧
⎪
⎨
⎪
⎩

||x(T)||||K|| 1
umax

√

𝜆max(P)
𝜆min(P)

, h′
⎫
⎪
⎬
⎪
⎭

. (17)
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2086 CHANG and FU

Algorithm 2. Update h through performance ||x||2

Initialize:
h(0) ≥ 1, k = 0, 𝛾 > 0.

while True do

m ←

⌈

−(2n−1) ln h(k)
ln
(

1−𝛼1
1

2h(k)

)

⌉

+ 1

for i = 1, 2,… ,m − 1 do
h(k + i) = h(k)

end for
if ‖x(k +m)‖2 ≤ (1 − 𝛼 1

2h(k)
)‖x(k +m − 1)‖2 then

h(k +m) = h(k)
else

h(k +m) = h(k) + 𝛾 max
{
‖x(k)‖m+1

, 1
}

end if
k ← k +m

end while

From Theorem 2, there exists constants 𝜌, 𝜏 to satisfy

||x(T)|| ≤ 𝜌||x(T − 1)|| + 𝜏.

Let 𝜔0 be the max solution of the equation

𝛾𝜔
2
0 = (𝜌𝜔0 + 𝜏) ||K||

1
umax

√

𝜆max(P)
𝜆min(P)

,

and let 𝜔 ≥ max
{√

hmin∕𝛾, 𝜔0

}

. Consider the index T be the updating index. If ||x(T − 1)|| ≥ 𝜔, we have

h(T) ≥ 𝛾||x(T − 1)||2 ≥ max
⎧
⎪
⎨
⎪
⎩

||x(T)||||K|| 1
umax

√

𝜆max(P)
𝜆min(P)

, h′
⎫
⎪
⎬
⎪
⎭

,

which meets the desired condition (17).
Consider the case when ||x(T − 1)|| < 𝜔, and we have

max
⎧
⎪
⎨
⎪
⎩

||x(T)||||K|| 1
umax

√

𝜆max(P)
𝜆min(P)

, h′
⎫
⎪
⎬
⎪
⎭

≤ max
⎧
⎪
⎨
⎪
⎩

(𝜌𝜔 + 𝜏) ||K|| 1
umax

√

𝜆max(P)
𝜆min(P)

, h′
⎫
⎪
⎬
⎪
⎭

,

which is a bounded constant. It is noticing that for each updating time k, it holds h(k + 1) ≥ h(k) + 𝛾 . Thus, for any positive
constant, after updating finite times, we can always get h(T) to satisfy (17).

Thus, there exists an index T such that (17) is achieved. Then,

V k
k+1 ≤

(

1 − 1
2h(k)

𝛼1

)

V k
k ,

holds for k ≥ T. This ensures the state convergence and the bounded of dynamic parameter h(k). This ends the proof. ▪

In Algorithm 1, there are some limitation on the performance V∗
∗∗. On the one hand, it is not easy to compute V∗

∗∗. For
each index k = 0, 1, … , we need to compute both V k

k and V k
k+1. On the other hand, V∗

∗∗ is chosen based on the positive def-
inite matrix P, which may not be optimizable from the user-specified perspective. Thus, we improve it as the performance
||x||2, which is summarized in Algorithm 2.
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CHANG and FU 2087

Theorem 4. Supposed that Assumption 1* is satisfied. Consider system (1) under control (12). If the dynamic parameter
h(k) is updated through Algorithm 2, the system state x(k) satisfies

lim
k→+∞

||x(k)|| = 0.

Proof. If there exists a finite instant T such that

h(k) = h(T), h(T) > h(T − 1), k ≥ T.

Then, we can get

||x(mTi + T)||2 ≤
(

1 − 𝛼 1
2h(T)

)

||x(mT(i − 1) + T)||2,

where i = 1, 2, … , and

mT =
⎡
⎢
⎢
⎢
⎢

−(2n − 1) ln h(T)

ln
(

1 − 𝛼1
1

2h(T)

)

⎤
⎥
⎥
⎥
⎥

+ 1.

Thus, it holds

lim
i→+∞

||x(mTi + T)||2 = 0.

From Theorem 2, we can get constants 𝜌, 𝜏 such that

||x(j +mTi + T)|| ≤ 𝜌j||x(mTi + T)|| +
j−1∑

s=0
𝜌

s
𝜏,

holds for j = 1, 2, … ,mT . The following analysis is similar to that in Theorem 3, which is omitted here. This ends the
proof. ▪

Remark 5. We employ the quadratic term ||x(k)||2 to get the upper bounded of 𝜌||x(k)|| + 𝜏 for the unknown constants 𝜌,
𝜏. But, when ||x(k)|| is larger enough, it will generate a larger parameter h, which is not benefit to the system performance.
Thus, by choosing a small constant 𝜖, we can utilize ||x(k)||1+𝜖 to replace ||x(k)||2.

5 SIMULATION

Next, we present an example to illustrate the effectiveness of our designed framework.
Example. Consider

x1(k + 1) = x1(k) + p1x2(k) + a1u2(v(k)) sin(x2(k)),
x2(k + 1) = x2(k) + p2x3(k) + a2u(v(k))x4(k),
x3(k + 1) = x3(k) + p3x4(k) + a3u2(v(k)),
x4(k + 1) = x4(k) + u(v(k)), (18)

where x = [x1, x2, x3, x4]T ∈ R4 is the system state, and u(v) ∈ R is the control input with v ∈ R being the designed input.
We choose the positive constants p1, p2, p3 as 0.05, 0.5, and 1.2. Let a1 = −0.5, a2 = 2, and a3 = −0.6. It is verified that
Assumption 1 holds with 𝜙(u) = 2u. Then, the low gain feedback control is designed as

u(k) = −2 1
h4 x1(k) − 4 1

h3 x2(k) − 6 1
h2 x3(k) − 4 1

h
x4(k), (19)
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2088 CHANG and FU

(A) (B)

(C)

F I G U R E 1 Simulation of system (18) and (19) under Algorithm 1

(A) (B)

(C)

F I G U R E 2 Simulation of system (18) and (19) under Algorithm 2

where h is a parameter. The considered initial state is assumed as x(0) = [0.4,−0.2,−0.3, 0.4]T . We, respectively, employ
Algorithms 1 and 2 to determine the parameter h, and verify its effectiveness.

Based on Algorithm 1, the state trajectory and input trajectory of system (18) and (19) are, respectively, shown in
Figure 1. It is shown that the state is converging to zero, and the input is bounded by 0.3, which verifies the effectiveness
of Algorithm 1. Similarly, Algorithm 2 is illustrated through noticing the state trajectory and input trajectory of system
(18) and (19) in Figure 2. Thus, both Algorithms 1 and 2 can generate the stable closed-loop system, which verifies the
effectiveness.

6 CONCLUSION

The discrete-time low gain feedback control technology was introduced in this article, and the stabilizing control for
DFNSs was designed respect to the unknown input saturation. Meanwhile, it is assumed that the nonlinear growth rate
could be restricted by an input-depended function. By considering the low gain feedback control technology, we converted
the design of the stabilizing control into the determination of a parameter. Then, we presented that the parameter exists
to make the generated closed-loop system be stability. And then the system evolution was estimated to design the update
policy for the parameter. We, respectively, considered the Lyapunov function and the Euclidean norm to evaluate the
policy, and gave Algorithms 1 and 2 to calculate the parameter. The given numerical example illustrates the effectiveness
of the designed controls.
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