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Abstract 

This paper studies the PWM control problem of a class of nonlinear systems. During a modulation 
period, the PWM control signal maintains a pulse waveform with tunable width and fixed magnitude. 
The PWM control only possesses finite states, and has relatively limited control capability. This causes 
the degradation of system performance, and even the instability when implementing into a nonlinear 
system. We will introduce a novel method to design both the state feedback stabilizer and the output 
feedback stabilizer for strict-feedback nonlinear systems via the PWM control. The system performance 
is analyzed in a novel framework and the stability criteria is derived to ensure the system convergence. 
At last, two examples are considered to illustrate the effectiveness of our proposed method. 
© 2023 The Franklin Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

Designing the stabilizing controller plays a crucial role in the study of control systems [1] .
he advent of computer-based and digitally networked control systems requires the analogue
lant outputs and the control variables be finite bit-strings or discrete symbols for storage,
anipulation and transmission [2] . This process of converting a continuous-valued variable

nto a finite-valued one entails a potentially significant loss of resolution. The system perfor-
ance is unavoidable to be degraded, even results in the system instability. Thus, it is desired

o stabilize the system by studying the digital controller. 
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The nonlinear phenomena are unavoidable in nature, and many results has been report-
ng the related algorithms on nonlinear systems [3,4] . The strict-feedback nonlinear system
elongs to an important class of nonlinear systems. There are three main approaches to de-
ign the control for this system. One is the backstepping method, where the control input is
chieved based on a series of auxiliary input. A detailed design process was introduced in
5] , and some recent develop results could be seen in [6–10] . Another design technology is
ased on high gain feedback control, where the control is characterized by a parameter and
his parameter is determined through analyzing the system nonlinear terms. It was widely
onsidered in [11–14] to design the stabilizing or regulating controller for strict-feedback
onlinear systems. The last is the intelligent control, where the fuzzy technologies or the
eural technologies are utilized to approximate the system nonlinear terms. For example,
ased on the fuzzy approximate approach, [15] combined the high-gain observer and the
daptive design method to solve the tracking problem for the strict-feedback nonlinear sys-
ems. [16] employed the neural network to approximate the uncertain nonlinear dynamics and
eveloped the backstepping method to give the tracking controller. In [17] , after using fuzzy
ogic systems (FLSs) to estimate the unknown nonlinear functions, the backstepping method
as applied to the design of adaptive fuzzy controller. However, the designed controllers in

bove results have a continuous form, and the performance of digitization is needed to be
urther analyzed. 

There are some existing results focusing on the digitizing controller problem for the strict-
eedback nonlinear systems. One point is considering the sampled-data control. In this case,
he analogue outputs or states are measured at the sampling instants, and then the designed
ontrol signal is holding during a period. For example, [18] studied the sampled-data out-
ut stabilization problem for the strict-feedback nonlinear systems based on the high gain
eedback control method. For the large-scale systems, [19] designed the tracking controller
hen the interconnections between subsystems were unknown. Another point is considering

he quantized control. The process of quantized signal is to map an infinite set of continuous
alues into a finite set of quantized values. For nonlinear system, some design problems of
uantized controller were solved in [20–22] . Specially, [23] gave a quantized controller for
he strict-feedback nonlinear systems when the nonlinear terms were unknown. But, it is noted
hat the control input generated by the sampling and the quantizing has infinite states. 

The pulse width modulation(PWM) can be seen as a kind of quantized scheme. It converts
he signal into two or three levels, which corresponds to the ON-OFF switching of the actu-
tor (or controller) [24] . Such an ON-OFF characteristic is also beneficial to encode desired
ontinuous-time information into digital bits, which aligns with nowadays wireless communi-
ation paradigms. In the context of PWM control, the time is partitioned into a series of equal
ycles, and then the PWM control signal turns the actuator ON over a portion of each cycle
nd switches it OFF during the rest of the cycle. However, it should be pointed out that the
N-OFF switching actuator (or controller) introduces strong nonlinear characteristics such as
iscontinuity and saturation to the system. It is for this reason that a direct implementation
f PWM control may not yield satisfactory performance. Much research effort has therefore
een devoted to determining the PWM duty cycle fulfilling the required system performance
25–27] . So far, several attractive methods have been developed in the past few years, such
s sliding mode control [28,29] , hybrid control [30,31] , and LQ optimal control [32,33] . Nev-
rtheless, it is noteworthy that the inherent nonlinearity of the physical systems concerned in
hese studies is unfortunately neglected, which implies that the desired control performance
ay not be preserved in realistic scenarios as most practical control systems are complexly
8551 
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onlinear. As a result, the following two essential challenging issues are identified for achiev-
ng the PWM controller design of strict-feedback nonlinear systems: 1) how to ensure that
he finite level states could stabilize the strict-feedback nonlinear system? and 2) how to cope
ith both the inherent nonlinearity of systems and the nonlinear character of PWM signal?
o the best of our knowledge, the above two issues remain challenging in the PWM control

iterature, which motivates this study. 
In this paper, we develop a novel PWM controller design method that provides feasi-

le solutions to the above two questions. The specific features are summarized as follows.
) The strict-feedback nonlinear system is stabilized through a PWM signal involving three
tates . Different from the continuous-time controller [14–16] , the sampled-and-hold controller
18,34] , and the quantized controller [35,36] , we present a novel method to design the stabiliz-
ng controller which only switches between three states −m, −1 , and m. Although the PWM
ignal can approximate the continuous-time signal with a small sampling size, the approxi-
ating error still exists and degrades the system performance. 2) A novel stable analyzing
ethod is presented to ensure the convergence of the generated closed-loop system. Inspired
y [37,38] which considered the hybrid observer, we extended the results to study the PWM
ontrol due to the impulse character. Through establishing a new relation for matrices, the
onvergence of the generated closed-loop system is guaranteed. 

The remainder of this paper is structured as follows. We will describe the problem in
ection 2 . The state feedback controller will be designed in Section 3 , while the output feed-
ack controller will be discussed in Section 4 . Two examples will be present in Section 5 to
llustrate the main results. Some ending remarks will be summarized in Section 6 , while a
eference list will end this paper. 

Notation: We employ ‖ · ‖ to denote the Euclidean norm for vectors, or the induced Eu-
lidean norm for matrices. We use I to denote an n × n identity matrix. sign (·) is the signum
unction defined as: sign (x) = −1 if x < 0, sign (x) = 0 if x = 0, and sign (x) = 1 if x > 0. 

. Problem formulation 

The strict-feedback nonlinear system addressed in the paper is 

˙ x i ( t ) = x i+1 ( t ) + f i (x 1 ( t ) , x 2 ( t ) , . . . , x i ( t ) ) , i = 1 , 2, . . . , n − 1 

˙  n ( t ) = u ( t ) + f n (x 1 ( t ) , x 2 ( t ) , . . . , x n ( t ) ) , 

y ( t ) = x 1 ( t ) , (1)

here x i is ith element of system state x = ( x 1 , x 2 , . . . , x n ) 
T ∈ R 

n , u ∈ R is the system input,
 ∈ R is the system output. The initial instant t 0 is assumed as 0, and the initial state is
(t 0 ) ∈ R 

n . The nonlinear function f i ( i = 1 , 2, . . . , n) is continuous and satisfies the following
ssumption. 

ssumption 1. For any x 1 , x 2 , . . . , x n ∈ R , it holds that 

 f i ( x 1 , x 2 , . . . , x i ) | ≤ θ ( | x 1 | + | x 2 | + . . . + | x i | ) , i = 1 , 2, . . . , n, (2)

here θ is a positive constant. 

emark 1. System (1) under Assumption 1 is called the strict-feedback nonlinear system.
any existing results have been reporting on the control design for such nonlinear systems.

or example, the output feedback control [12,15] designed the controller which is a continuous
8552 
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ignal; the sampled-data controller and the event-triggered controller was respectively designed
n [18,34,38,39] ; the quantized controller was given in [36] . Noticed that the values of all the
bove designed controllers were infinite. The problem is unsolved, as far as we know, that
sing finite values to stabilize the strict-feedback nonlinear system. This motivates this work.

The system state/output is measured at the instants t k = kT with T > 0 being the sampling
ize, and k = 0, 1 , 2, . . . , being the sampling index. We propose the following three-level-
tate-dependent PWM control law to stabilize the system (1) : 

(t ) = 

{
ms k , t ∈ [ t k , t k + δk ) , 

0, t ∈ [ t k + δk , t k+1 ) , 
(3)

here m is a prescribed positive constant representing the amplitude of the PWM signal,
 k ∈ {−1 , 1 } represents the sign of the pulse during the kth sampling period, and δk is known
s the pulse width during the kth sampling period. To make the PWM signal well-defined, it
s required that 0 ≤ δk ≤ T . Then, the duty cycle of the PWM is defined as 

 k = 

δk 

T 
· 100% ∈ [0% , 100%] (4)

hich describes the proportion of on time to the regular interval T . In particular, when the
ontrol is off during kth sampling period, it has a duty cycle of d k = 0% . A low duty cycle
orresponds to a low power of the control because the power is off for most of the time.
ince the PWM control has only three states, it has relatively limited control capability. 

It can be seen from (3) that the PWM control signal u(t ) is determined by two variables
 k and s k . Therefore, the main objective of this work is to design the two controller variables
 k , s k to achieve the stabilizing controller. Specifically, we consider the following two aspects:

• Designing the state feedback controller: Based on the measured state x(t k ) , proposing the
PWM controller (3) such that the resulting closed-loop system is asymptotically stable at
the equilibrium point x = 0. 
• Designing the output feedback controller: Based on the measured output y(t k ) , designing

the auxiliary variable ˆ x (t ) and the PWM controller (3) such that the resulting closed-loop
system is asymptotically stable at the equilibrium point x = 0, ˆ x = 0. 

. State feedback control 

.1. Control design 

The design of PWM control signal is mainly to determine the sign s k and the duty cycle
 k . In order to design these values, we introduce the auxiliary variables 

 1 ( t ) = 

1 

r 
x 1 ( t ) , z 2 ( t ) = 

1 

r 2 
x 2 ( t ) , . . . , z n ( t ) = 

1 

r n 
x n ( t ) , (5)

here r ≥ 1 is a parameter to be designed. 
By denoting z = (z 1 , z 2 , . . . , z n ) T , we design 

 k = sign ( K z ( t k ) ) , d k = 

∣∣∣∣ r n+1 K z ( t k ) 

m 

∣∣∣∣ · 100% , (6)

here K = ( k 1 , k 2 , . . . , k n ) 
T with k 1 to k n be the coefficients of a Hurwitz polynomial p(s) =

 

n + k s n−1 + . . . + k . 
n 1 
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From (6) , to ensure d k ≤ 1 , we need a sufficient large amplitude m. It is reasonable to
onsider such a constant m. The strict-feedback nonlinear system is in complex form, and the
ontrol need a certain power. Then, the following relation is holding: 

s k = 

r n+1 K z ( t k ) 

d k 
. (7)

.2. Stability analysis 

heorem 1. Supposed that Assumption 1 is satisfied. For any initial state x(t 0 ) ∈ R 

n , through
hoosing appropriate sampling size T and control parameter r, system (1) can be stabilized
hrough the PWM signal (3) , (6) if the PWM amplitude m is sufficient large. 

roof. For the auxiliary variables z = (z 1 , z 2 , . . . , z n ) T , we obtain 

˙  ( t ) = r Az ( t ) + 

1 

r n 
Bu ( t ) + F ( t ) , (8)

here 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 0 · · · 0 

0 0 1 · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 0 · · · 1 

0 0 0 · · · 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, B = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

0 

. . . 
0 

1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, F ( t ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 
r f 1 (x 1 ( t ) ) 

1 
r 2 f 2 (x 1 ( t ) , x 2 ( t ) ) 

. . . 
1 

r n−1 f n−1 (x 1 ( t ) , . . . , x n−1 ( t ) ) 
1 
r n f n (x 1 ( t ) , . . . , x n−1 ( t ) , x n ( t ) ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (9)

Solving the above equation get 

 ( t k+1 ) = e rT A z ( t k ) + 

∫ t k+1 

t k 

e rA ( t k+1 −s ) 1 

r n 
Bu ( s ) ds + 

∫ t k+1 

t k 

e rA ( t k+1 −s ) F ( s ) ds. (10)

Substituting the input (3), (6) into the above equation, we express the second item as ∫ t k+1 

t k 

e rA ( t k+1 −s ) 1 

r n 
Bu ( s ) ds = 

∫ rT 

0 
e A ( rT −s ) 1 

r n+1 
Bu 

(
t k + 

s 

r 

)
ds 

= 

∫ rδk 

0 
e A ( rT −s ) BK z ( t k ) ds = 

∫ rδk 

0 
e A ( rT −s ) 1 

r n+1 
Bms k ds 

= 

1 

d k 

∫ rd k T 

0 
e A ( rT −s ) BK z ( t k ) ds. (11)

Let 

 ( α, τ ) = 

(
e αA + 

1 

τ

∫ τα

0 
e A ( α−s ) BK ds 

)
(12)

e a matrix function defined on [0, 1] × (0, 1] . 
From (10) , we get the closed-loop system as 

 ( t k+1 ) = M ( rT , d k ) z ( t k ) + 

˜ F ( t k ) , (13)

here ˜ F ( t k ) = 

∫ t k+1 

t e rA ( t k+1 −s ) F ( s ) ds. 

k 
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Noted that the choice of K can make the matrix A + BK be Hurwitz. A positive definite
atrix P can be found to meet 

( A + BK ) T P + P ( A + BK ) ≤ −I . (14)

Let the Lyapunov function be V k = z T ( t k ) P z ( t k ) . Then, it holds 

 k+1 = 

(
M ( rT , d k ) z ( t k ) + 

˜ F ( t k ) 
)T 

P 

(
M ( rT , d k ) z ( t k ) + 

˜ F ( t k ) 
)

= z T ( t k ) M 

T ( rT , d k ) P M ( rT , d k ) z ( t k ) 

+2z T ( t k ) M 

T ( rT , d k ) P 

˜ F ( t k ) + 

˜ F 

T ( t k ) P 

˜ F ( t k ) . (15)

o continue, we need to analyze the matrix function M(α, τ ) and the nonlinear function
˜ 
 (t k ) . On the one hand, the derivative of M(α, τ ) satisfies 

∂M ( α, τ ) 

∂α
= Ae αA + 

1 

τ
A 

∫ τα

0 
e A ( α−s ) BK ds + e A ( α−τα) BK, (16)

nd 

∂ 2 M ( α, τ ) 

∂α2 
= A 

2 e αA + 

1 

τ
A 

2 
∫ τα

0 
e A ( α−s ) BK ds + Ae A ( α−τα) BK + A ( 1 − τ ) e A ( 1 −τ ) αBK. (17)

Considering the function 

 ( α, τ, v ) = v T M 

T ( α, τ ) P M ( α, τ ) v, ∀ v ∈ { v | ‖ v‖ = 1 } , (18)

e get 

 ( α, τ, v ) = ω ( 0, τ, v ) + α
dω ( α, τ, v ) 

dα

∣∣∣∣
α=0 

+ α2 d 

2 ω ( α, τ, v ) 

dα2 

∣∣∣∣
α= ξ

, (19)

here ξ ∈ [0, 1] . 
On the other hand, due to A 

n = 0, it holds 

1 

τ

∫ ατ

0 
e A ( α−s ) BK ds = 

n ∑ 

j=0 

1 

( j + 1 ) ! 
A 

j BK α j+1 1 

τ

(
1 − ( 1 − τ ) j+1 

)

= 

n ∑ 

j=0 

1 

( j + 1 ) ! 
A 

j BK α j+1 (1 + ( 1 − τ ) + . . . + ( 1 − τ ) j 
)
. (20)

e get that M(α, τ ) , ∂M ( α, τ ) / ∂α and ∂ 2 M ( α, τ ) / ∂α2 are bounded. 
Then, a constant αm 

can be found such that 

 ( α, τ, v ) ≤ ω ( 0, τ, v ) − 1 

2 

αv T v, α ∈ [0, αm 

] (21)

here ∂M ( α, τ ) / ∂α| α=0 = −v T v is utilized. 
Since v is arbitrarily chosen in { v | ‖ v‖ = 1 } , one obtains 

 

T ( α, τ ) P M ( α, τ ) ≤ P − α

2 

I , α ∈ [ 0, αm 

] , τ ∈ [ 0, 1 ] . (22)

Back to (50) , we turn to estimate the nonlinear term 

˜ F (t k ) . Under Assumption 1 , we get 

1 

r i 
| f i ( x 1 , x 2 , . . . , x i ) | ≤ θ ( | z 1 | + | z 2 | + . . . + | z i | ) ≤ θ

√ 

n 

‖ z ‖ , i = 1 , 2, . . . , n, (23)
8555 
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hich further yields 

 F ( t ) ‖ ≤ θn 

‖ z ‖ . (24)

Meanwhile, it holds 

d 

dt 
‖ z ( t ) ‖ ≤ ‖ ˙ z ( t ) ‖ ≤ r ‖ A 

‖ ‖ z ( t ) ‖ + 

1 

r n 
‖ B 

‖ | u ( t ) | + θn 

‖ z ( t ) ‖ , (25)

nd 

 t k + d k 

t k 

| u ( s ) | ds = 

| rK z ( t k ) | ≤ r ‖ K 

‖ ‖ z ( t k ) ‖ . (26)

In (25) , integrating the left part from t k to t (t ∈ [ t k , t k+1 )) , one gets 

 z ( t ) ‖ ≤ ‖ z ( t k ) ‖ + ( r ‖ A 

‖ + θn ) 

∫ t 

t k 

‖ z ( s ) ‖ ds + 

‖ B 

‖ ‖ K 

‖ ‖ z ( t k ) ‖ . (27)

Then, using the Grönwall’s inequality, one obtains 

 z ( t ) ‖ ≤ ( 1 + 

‖ B 

‖ ‖ K 

‖ ) e ( r ‖ A ‖ + θn ) ( t−t k ) ‖ z ( t k ) ‖ . (28)

In this case, the nonlinear term 

˜ F (t k ) is estimated as below: 

˜ F ( t k ) 
∥∥∥ ≤

∫ t k+1 

t k 

e r ‖ A ‖ ( t k+1 −s ) ‖ F ( s ) ‖ ds 

≤
∫ t k+1 

t k 

θne r ‖ A ‖ ( t k+1 −s ) ( 1 + 

‖ B 

‖ ‖ K 

‖ ) e ( r ‖ A ‖ + θn ) ( s−t k ) ‖ z ( t k ) ‖ ds (29)

≤
∫ t k+1 

t k 

θne rT ‖ A ‖ ( 1 + 

‖ B 

‖ ‖ K 

‖ ) e θn ( s−t k ) ‖ z ( t k ) ‖ ds 

≤ e ‖ A ‖ ( 1 + 

‖ B 

‖ ‖ K 

‖ ) (e θnT − 1 

)‖ z ( t k ) ‖ . 
Thus, back to (50) , we get that, when rT ≤ αm 

, it holds 

 k+1 ≤ V k − rT 

2 

‖ z ( t k ) ‖ 2 + 2z T ( t k ) M 

T ( rT , d k ) P 

˜ F ( t k ) + 

˜ F 

T ( t k ) P 

˜ F ( t k ) 

≤ V k − rT 

2 

‖ z ( t k ) ‖ 2 + 2	 

‖ P 

‖ ( 1 + 

‖ B 

‖ ‖ K 

‖ ) e ‖ A ‖ (e θnT − 1 

)‖ z ( t k ) ‖ 2 
+ 

‖ P 

‖ ( 1 + 

‖ B 

‖ ‖ K 

‖ ) 2 e 2 ‖ A ‖ (e θnT − 1 

)2 ‖ z ( t k ) ‖ , (30)

here 	 is the upper bounded of ‖ M ( α, τ ) ‖ on the area [0, 1] × (0, 1] . 
When T ∈ (0, 1] , it holds 

 

θnT − 1 ≤ T 
(
e θn − 1 

)
. (31)

Thus, when 

 ≥ 8 	 

‖ P 

‖ ( 1 + 

‖ B 

‖ ‖ K 

‖ ) e ‖ A ‖ (e θn − 1 

) + 4 

‖ P 

‖ ( 1 + 

‖ B 

‖ ‖ K 

‖ ) 2 e 2 ‖ A ‖ (e θn − 1 

)2 
, (32)

e get 

 k+1 ≤ V k − rT 

4 

‖ z ( t k ) ‖ 2 . (33)
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This indicates the convergence of V k . Since r is a constant, it is easy to conclude that
ystem (1) under PWM control (3), (6) is stable at equilibrium point x = 0. 

The last work is to discuss the choosing of m. 
It is needed that m ≥ | r n+1 K z(t k ) | for any index k. Since 

 k+1 ≤ V k ≤ . . . ≤ V 0 (34)

e get 

∣∣r n+1 K z ( t k ) 
∣∣ ≤ r n+1 ‖ K 

‖ ‖ z ( t k ) ‖ ≤ r n+1 ‖ K 

‖ 
√ 

V k 

λmin ( P ) 
≤ r n+1 ‖ K 

‖ 
√ 

V 0 

λmin ( P ) 

≤ r n+1 ‖ K 

‖ 
√ 

λmax ( P ) 

λmin ( P ) 
‖ z ( t 0 ) ‖ ≤ r n ‖ K 

‖ 
√ 

λmax ( P ) 

λmin ( P ) 
‖ x ( t 0 ) ‖ . (35)

Thus, m need to be chosen to meet 

 ≥ r n ‖ K 

‖ 
√ 

λmax ( P ) 

λmin ( P ) 
‖ x ( t 0 ) ‖ , (36)

hich would satisfy the requirement. This ends the proof. �

The design process can be summarized as Algorithm 1 : 

Algorithm 1: Implementation of State Feedback PWM Controller. 

/* Offline Design */ 
1 Given the matrices A, B in (9), select K 

T ∈ R 

n , and P ∈ R 

n×n such that (14) holds; 
2 For the obtained K and P , compute constant αm 

in (21) and choose a suitable r 
satisfying (32); 

3 Based on the parameter r, choose the sampling size T satisfying rT ≤ αm 

; 
4 For given area � with x(t 0 ) ∈ �, get the amplitude m satisfying (36); 
/* Online Design */ 

5 while t ∈ [ t k , t k+1 ) do 

6 Determine s k , d k according to (6); 
7 Update the sampling index k = k + 1 ; 
8 end 

. Output feedback control 

.1. Control design 

In many scenarios, the system state is not available. In this section, we consider the design
roblem of output feedback control. Based on the observer design technology proposed in
38] , we consider the variables as 

˙ ˆ x ( t ) = A ̂  x ( t ) + Bu ( t ) , t ∈ [ t k , t k+1 ) , 

ˆ  ( t k+1 ) = ˆ x 
(
t −k+1 

) − T �L 

(
C ̂  x 

(
t −k+1 

) − y 
(
t −k+1 

))
, (37)
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here 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 0 · · · 0 

0 0 1 · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 0 · · · 1 

0 0 0 · · · 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, B = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

0 

. . . 
0 

1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, C = 

(
1 0 0 · · · 0 

)
. (38)

ere, � = diag 

{
1 
r , 

1 
r 2 , . . . , 

1 
r n 

}
where r ≥ 1 be a parameter to be designed. Vector L is the

bserver gain to be determined. 
Then, through considering the state transformation z ( t ) = � ˆ x ( t ) , we design 

 k = sign ( K z ( t k ) ) , d k = 

∣∣∣∣ r n+1 K z ( t k ) 

m 

∣∣∣∣ · 100% , (39)

here vector K is the control gain to be determined. 

.2. Stability analysis 

heorem 2. Supposed that Assumption 1 is satisfied. Let vectors K , L be designed to satisfy

A + BK −LC 

0 A + LC 

)T 

P + P 

(
A + BK −LC 

0 A + LC 

)
≤ −I , (40)

here P is a positive definite matrix. 
For any initial state x(t 0 ) ∈ R 

n , through choosing appropriate sampling size T and control
arameter r, system (1) can be stabilized through the PWM signal (3) , (6) if the PWM
mplitude m is sufficient large. 

roof. Considering the error state e ( t ) = �x ( t ) − z ( t ) , we obtain 

˙ e ( t ) = rAe ( t ) + F ( t ) , t ∈ [ t k , t k+1 ) , 

 ( t k+1 ) = ( I + rT LC ) e 
(
t −k+1 

)
, (41)

here 

 ( t ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 
r f 1 (x 1 ( t ) ) 

1 
r 2 f 2 (x 1 ( t ) , x 2 ( t ) ) 

. . . 
1 

r n−1 f n−1 (x 1 ( t ) , x 2 ( t ) , . . . , x n−1 ( t ) ) 
1 
r n f n (x 1 ( t ) , x 2 ( t ) , . . . , x n−1 ( t ) , x n ( t ) ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (42)

Meanwhile, under the state transformation z(t ) = � ˆ x (t ) , the dynamic (37) is transformed
nto 

˙ z ( t ) = r Az ( t ) + 

1 

r n 
Bu ( t ) , t ∈ [ t k , t k+1 ) , 

 ( t k+1 ) = z 
(
t −k+1 

) − rT LCe 
(
t −k+1 

)
, (43)

Solving the above equations get 

 ( t k+1 ) = ( I + rT LC ) e rT A e ( t k ) + ( I + rT LC ) 

∫ t k+1 

t k 

e rA ( t k+1 −s ) F ( s ) ds. (44)
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nd 

 ( t k+1 ) = e rT A z ( t k ) + 

∫ t k+1 

t k 

e rA ( t k+1 −s ) 1 

r n 
Bu ( s ) ds 

−rT LC 

(
e rT A e ( t k ) + 

∫ t k+1 

t k 

e rA ( t k+1 −s ) F ( s ) ds 

)
. (45)

For the control input, we have the relation ∫ t k+1 

t k 

e rA ( t k+1 −s ) 1 

r n 
Bu ( s ) ds = 

∫ rT 

0 
e A ( rT −s ) 1 

r n+1 
Bu 

(
t k + 

s 

r 

)
ds 

= 

∫ rδk 

0 
e A ( rT −s ) BK z ( t k ) ds = 

∫ rδk 

0 
e A ( rT −s ) 1 

r n+1 
Bms k ds 

= 

1 

d k 

∫ rd k T 

0 
e A ( rT −s ) BK z ( t k ) ds. (46)

Let 

 ( α, τ ) = 

(
e αA + 

1 
τ

∫ τα

0 e A ( α−s ) BK ds −αLCe αA 

( I + αLC ) e αA 

)
(47)

e a matrix function defined on [0, 1] × (0, 1] . From (44) and (45) , we get the closed-loop
ystem as 

 ( t k+1 ) = M ( rT , d k ) z ( t k ) + 

˜ F ( t k ) , (48)

here Z ( t ) = 

(
z T ( t ) , e T ( t ) 

)T 
, and 

˜ 
 ( t k ) = 

( 

−rT LC 

∫ t k+1 

t k 
e rA ( t k+1 −s ) F ( s ) ds 

( I + rT LC ) 
∫ t k+1 

t k 
e rA ( t k+1 −s ) F ( s ) ds 

) 

(49)

Let the Lyapunov function be V k = Z 

T ( t k ) P Z ( t k ) . 
Then, it holds 

 k+1 = 

(
M ( rT , d k ) Z ( t k ) + 

˜ F ( t k ) 
)T 

P 

(
M ( rT , d k ) Z ( t k ) + 

˜ F ( t k ) 
)

= Z 

T ( t k ) M 

T ( rT , d k ) P M ( rT , d k ) Z ( t k ) + 2Z 

T ( t k ) M 

T ( rT , d k ) P 

˜ F ( t k ) 

+ ̃

 F 

T ( t k ) P 

˜ F ( t k ) . (50)

o continue, we need to analyze the matrix function M(α, τ ) and the nonlinear function
˜ 
 (t k ) . A similar analysis with the state feedback case can also get a positive constant αm

uch that 

 

T ( α, τ ) P M ( α, τ ) ≤ P − α

2 

I , α ∈ [ 0, αm 

] , τ ∈ [ 0, 1 ] . (51)

Back to (50) , we turn to estimate the nonlinear term 

˜ F (t k ) . Under Assumption 1 , we get,
or i = 1 , 2, . . . , n, 

1 

r i 
| f i ( x 1 , x 2 , . . . , x i ) | ≤ θ

(∣∣∣∣1 

r 
x 1 

∣∣∣∣ + 

∣∣∣∣ 1 

r 2 
x 2 

∣∣∣∣ + . . . + 

∣∣∣∣ 1 

r i 
x i 

∣∣∣∣
)

≤ θ
√ 

n ( ‖ z ‖ + 

‖ e ‖ ) , (52)

hich further yields 

 F ( t ) ‖ ≤ θn ( ‖ z ‖ + 

‖ e ‖ ) . (53)
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Meanwhile, one obtains 

d 

dt 
‖ e ( t ) ‖ ≤ ‖ ˙ e ( t ) ‖ ≤ r ‖ A 

‖ ‖ e ( t ) ‖ + θn ( ‖ z ‖ + 

‖ e ‖ ) , (54)

nd 

d 

dt 
‖ z ( t ) ‖ ≤ ‖ ˙ z ( t ) ‖ ≤ r ‖ A 

‖ ‖ z ( t ) ‖ + 

1 

r n 
‖ B 

‖ | u ( t ) | . (55)

It holds 
 t k + d k 

t k 

| u ( s ) | ds = 

| rK z ( t k ) | ≤ r ‖ K 

‖ ‖ z ( t k ) ‖ . (56)

In (54) , integrating the left part from t k to t (t ∈ [ t k , t k+1 )) , one gets 

 e ( t ) ‖ ≤ ‖ e ( t k ) ‖ + ( r ‖ A 

‖ + θn ) 

∫ t 

t k 

‖ e ( s ) ‖ d s + θn 

∫ t 

t k 

‖ z ( s ) ‖ d s, (57)

nd 

 z ( t ) ‖ ≤ ‖ z ( t k ) ‖ + r ‖ A 

‖ 
∫ t 

t k 

‖ z ( s ) ‖ ds + 

‖ B 

‖ ‖ K 

‖ ‖ z ( t k ) ‖ . (58)

Then, it holds 

 z ( t ) ‖ + 

‖ e ( t ) ‖ ≤ ( 1 + 

‖ B 

‖ ‖ K 

‖ ) ( ‖ z ( t k ) ‖ + 

‖ e ( t k ) ‖ ) 
+ ( r ‖ A 

‖ + θn ) 

∫ t 

t k 

( ‖ z ( t ) ‖ + 

‖ e ( t ) ‖ ) ds. (59)

Then, using the Grönwall’s inequality, one obtains 

 z ( t ) ‖ + 

‖ e ( t ) ‖ ≤ ( 1 + 

‖ B 

‖ ‖ K 

‖ ) e ( r ‖ A ‖ + θn ) ( t−t k ) ( ‖ z ( t k ) ‖ + 

‖ e ( t k ) ‖ ) 
≤

√ 

2 ( 1 + 

‖ B 

‖ ‖ K 

‖ ) e ( r ‖ A ‖ + θn ) ( t−t k ) ‖ Z ( t k ) ‖ . (60)

In this case, the nonlinear term 

∫ t k+1 

t k 
e rA ( t k+1 −s ) F ( s ) ds is estimated as below: ∥∥∥∥

∫ t k+1 

t k 

e rA ( t k+1 −s ) F ( s ) ds 

∥∥∥∥
≤

∫ t k+1 

t k 

e r ‖ A ‖ ( t k+1 −s ) ‖ F ( s ) ‖ ds 

≤
∫ t k+1 

t k 

θne r ‖ A ‖ ( t k+1 −s ) 
√ 

2 ( 1 + 

‖ B 

‖ ‖ K 

‖ ) e ( r ‖ A ‖ + θn ) ( s−t k ) ‖ Z ( t k ) ‖ ds 

≤
∫ t k+1 

t k 

θne rT ‖ A ‖ √ 

2 ( 1 + 

‖ B 

‖ ‖ K 

‖ ) e θn ( s−t k ) ‖ Z ( t k ) ‖ ds 

≤ e ‖ A ‖ 
√ 

2 ( 1 + 

‖ B 

‖ ‖ K 

‖ ) (e θnT − 1 

)‖ Z ( t k ) ‖ . (61)

hich further yields 

˜ 
 ( t k ) = 

( 

−rT LC 

∫ t k+1 

t k 
e rA ( t k+1 −s ) F ( s ) ds 

( I + rT LC ) 
∫ t k+1 

t k 
e rA ( t k+1 −s ) F ( s ) ds 

) 

(62)

˜ F ( t k ) 
∥∥∥ ≤ 2 ( 1 + 

‖ LC 

‖ ) e ‖ A ‖ ( 1 + 

‖ B 

‖ ‖ K 

‖ ) (e θnT − 1 

)‖ Z ( t k ) ‖ (63)
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Thus, back to (50) , we get that, when rT ≤ αm 

, it holds 

 k+1 ≤ V k − rT 

2 

‖ Z ( t k ) ‖ 2 + 2Z 

T ( t k ) M 

T ( rT , d k ) P 

˜ F ( t k ) + 

˜ F 

T ( t k ) P 

˜ F ( t k ) 

≤ V k − rT 

2 

‖ Z ( t k ) ‖ 2 + 4	 

‖ P 

‖ ( 1 + 

‖ LC 

‖ ) e ‖ A ‖ ( 1 + 

‖ B 

‖ ‖ K 

‖ ) (e θnT − 1 

)‖ Z ( t k ) ‖ 2 

+4 

‖ P 

‖ ( 1 + 

‖ LC 

‖ ) 2 ( 1 + 

‖ B 

‖ ‖ K 

‖ ) 2 e 2 ‖ A ‖ (e θnT − 1 

)2 ‖ Z ( t k ) ‖ , (64)

here 	 is the upper bounded of ‖ M ( α, τ ) ‖ on the area [0, 1] × (0, 1] . 
When T ∈ (0, 1] , it holds e θnT − 1 ≤ T 

(
e θn − 1 

)
. Thus, when 

 ≥ 16 	 

‖ P 

‖ ( 1 + 

‖ LC 

‖ ) ( 1 + 

‖ B 

‖ ‖ K 

‖ ) e ‖ A ‖ (e θn − 1 

)
+16 

‖ P 

‖ ( 1 + 

‖ LC 

‖ ) 2 ( 1 + 

‖ B 

‖ ‖ K 

‖ ) 2 e 2 ‖ A ‖ (e θn − 1 

)2 
, (65)

e get 

 k+1 ≤ V k − rT 

4 

‖ z ( t k ) ‖ 2 . (66)

Therefore, the convergence of V k is ensured. Since r is a constant, it is achieved that system
1) under PWM control (3), (39) is stable at equilibrium point x = 0, ˆ x = 0. 

The choosing of m is depended on both the initial system state x(0) and the initial observer
tate ˆ x (0) . In detail, it is needed that m ≥ | r n+1 K z(t k ) | for any index k. Since V k+1 ≤ V k ≤
 . . ≤ V 0 we get 

∣∣r n+1 K z ( t k ) 
∣∣ ≤ r n+1 ‖ K 

‖ ‖ z ( t k ) ‖ ≤ r n+1 ‖ K 

‖ 
√ 

V k 

λmin ( P ) 
≤ r n+1 ‖ K 

‖ 
√ 

V 0 

λmin ( P ) 

≤ r n+1 ‖ K 

‖ 
√ 

λmax ( P ) 

λmin ( P ) 
max 

{ 

‖ z ( t 0 ) ‖ , ‖ e ( t 0 ) ‖ 
} 

≤ 2r n ‖ K 

‖ 
√ 

λmax ( P ) 

λmin ( P ) 
max 

{ 

‖ x ( t 0 ) ‖ , 
∥∥ ˆ x ( t 0 ) 

∥∥} 

(67)

Thus, m need to be chosen to meet 

 ≥ 2r n ‖ K 

‖ 
√ 

λmax ( P ) 

λmin ( P ) 
max 

{ 

‖ x ( t 0 ) ‖ , 
∥∥ ˆ x ( t 0 ) 

∥∥} 

, (68)

hich would satisfy the requirement. 
This ends the proof. �
The design process can be summarized as Algorithm 2 : 

emark 2. Our design is mainly based on the high gain feedback control method. First, we
onsider a state transformation to get a new variable z ( t ) which involves a parameter r to be
etermined. Then, we compute the variables s k , d k in PWM signal based on the new variable
 ( t ) . At last, based on the Lyapunov analysis, we determine the parameter r and sampling
ize T to ensure the system convergence. 

emark 3. Noticed that the main contribution in this paper is to design the stabilizing con-
roller for a strict-feedback nonlinear system via the PWM signal. The introduced method is
ased on the high gain control method, and there are some limitations, such as the high am-
litude m, the small sampling size T , and the frequent switching. Because the strict-feedback
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Algorithm 2: Implementation of Output Feedback PWM Controller. 

/* Offline Design */ 
1 Given the matrices A, B, C in (38), select K 

T ∈ R 

n , L ∈ R and P ∈ R 

2n×2n such that 
(40) holds; 

2 For the obtained K, L and P , compute constant αm 

in (51) and choose a suitable r 
satisfying (65); 

3 Based on the parameter r, choose the sampling size T satisfying rT ≤ αm 

; 
4 For given area � with x(t 0 ) , ˆ x (t 0 ) ∈ �, get the amplitude m satisfying (68); 
/* Online Design */ 

5 while t ∈ [ t k , t k+1 ) do 

6 if k 	 = 0 then 

7 Update the state ˆ x (t k ) through (37); 
8 end 

9 Determine s k , d k according to (39); 
10 Update the sampling index k = k + 1 ; 
11 end 

n  

m  

p  

d  

h  

c  

O  

c  

i

5

E

x  

w  

i  

0  

A

 

 

onlinear system is high-order and nonlinear. To dominate such a system, a high amplitude
and a small sampling size T may be demanded. The high amplitude m results in spike

henomena in the system performance, since the state z ( t ) ranges in a large area. Meanwhile,
ue to small sampling size T , the undesired high frequent would also happen. On the one
and, we may introduce too many inequalities in the analysis process. In most scenarios, the
onvergence is still achieved, even choosing a large sampling size T and a small parameter r.
n the other hand, we provide a relation about these parameters, and we can comprehensively

onsider all these parameters to get the stabilizing controller. For example, if the initial state
s smaller, one can choose a small amplitude m. 

. Simulation examples 

xample 1. Consider the nonlinear system 

˙  1 (t ) = x 2 (t ) + sin (x 1 (t )) x 1 (t ) , ˙ x 2 (t ) = u(t ) , (69)

here x = ( x 1 , x 2 ) 
T is the system state, u is the system input. The measurement is x(kT )

n the state feedback case, and y ( kT ) = x 1 ( kT ) in the output feedback case, where T >

is the sampling size, and k is the index. Obviously, the nonlinearity sin (x 1 ) x 1 satisfies
ssumption 1 with θ = 1 . 

I. The State Feedback Case: The PWM control u(t ) is described as 

u(t ) = 

{
ms k , t ∈ [ k T , k T + δk ) , 

0, t ∈ [ kT + δk , (k + 1) T ) , 
(70)

where variables s k , δk are designed as 

s k = sign 

(
k 1 r 2 x 1 ( kT ) + k 2 rx 2 ( kT ) 

)
, 

δk = T ·
∣∣∣ k 1 r 2 x 1 ( kT ) + k 2 rx 2 ( kT ) 

m 

∣∣∣ · 100% . 
(71)
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Fig. 1. Trajectory of system (69) under control (70),(71) . 
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Let m = 1 , T = 0. 00005 , r = 2, k 1 = −1 and k 2 = −2. The trajectory of system (69) under
WM control (70), (71) is shown in Fig. 1 . It can be seen from Fig. 1 a that the state trajectories
re converging to zero, and the control signal in Fig. 1 b is in pulse form. This illustrates the
ffectiveness of our design method. 

I. The Output Feedback Case: For the output case, the auxiliary variables ˆ x 1 , ˆ x 2 are designed
as 

˙ ˆ x 1 (t ) = ˆ x 2 (t ) , ˙ ˆ x 2 (t ) = u(t ) , t ∈ [ t k , t k+1 ) , 

ˆ x 1 (t k+1 ) = ˆ x 1 (t 
−
k+1 ) + l 1 

T 
r ( ̂  x 1 (t 

−
k+1 ) − y(t k+1 )) , 

ˆ x 2 (t k+1 ) = ˆ x 2 (t 
−
k+1 ) + l 2 

T 
r 2 ( ̂  x 1 (t 

−
k+1 ) − y(t k+1 )) , 

(72)

where t k = kT . Then, based on the variables ˆ x 1 (t ) and ˆ x 2 (t ) , we design the PWM control
as 

u(t ) = 

{
ms k , t ∈ [ k T , k T + δk ) , 

0, t ∈ [ kT + δk , (k + 1) T ) , 
(73)

where 

s k = sign 

(
k 1 r 

2 ˆ x 1 ( kT ) + k 2 r ̂  x 2 ( kT ) 
)
, 

δk = T ·
∣∣∣∣k 1 r 2 ˆ x 1 ( kT ) + k 2 r ̂  x 2 ( kT ) 

m 

∣∣∣∣ · 100% . (74)
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Fig. 2. Trajectory of system (69) under control (73), (74) . 
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Let r = 5 , T = 0. 00005 , m = 5 , l 1 = −2, l 2 = −1 , k 1 = −2 and k 2 = −1 . The system
rajectory is shown in Fig. 2 . It can be seen in Fig. 2 c that the control input is in PWM form.
ne can also seen in Fig. 2 a that the system states x 1 (t ) , x 2 (t ) converge to the equilibrium
oint x = 0, and in Fig. 2 b that the variables ˆ x 1 (t ) , ˆ x 2 (t ) converge to the equilibrium point

ˆ  = 0. This verifies the effectiveness of Theorem 2 . 

xample 2. Consider an electromechanical system, which is shown in Fig. 3 . 
Following the result in [40] , we describe the dynamic as 

M ̈q + B ̇  q + N sin (q) = I , 
L ̇

 I = V 0 − RI − K B ̇  q , 
(75)

here M = 

J 
K τ

+ 

mL 2 0 
3 K τ

+ 

M 0 L 2 0 
K τ

+ 

2M 0 R 2 0 
5 K τ

, N = 

mL 0 G 

2K τ
+ 

M 0 L 0 G 

K τ
, and B = 

B 0 
K τ

. J is the rotor inertia,
is the link mass, M 0 is the load mass, L 0 is the link length, R 0 is the radius of the load, G is
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Fig. 3. Schematic of the electromechanical system. 

Fig. 4. The trajectory of state x 1 (t ) , x 2 (t ) and x 3 (t ) in system (76) under control (77),(78) . 
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he gravity coefficient, B 0 is the coefficient of viscous friction at the joint, q(t ) is the angular
otor position (and, hence, the position of the load), I (t ) is the motor armature current, and
 τ is the coefficient that characterizes the electromechanical conversion of armature current

o torque. L is the armature inductance, R is the armature resistance, K B is the back EMF
oefficient, and V 0 is the input control voltage. The values of the parameters are chosen
s J = 162. 5 kg · m 

2 , m = 0. 506 kg, R 0 = 0. 023 m, M 0 = 0. 434kg, L 0 = 0. 305 m, B 0 = 16 . 25 ×
0 

−3 N · m · s/rad , L = 50H , R = 0. 05�, and K τ = K B = 0. 90N · m/A . 
We also consider the variables x 1 = q, x 2 = ˙ q , x 3 = 

I 
M 

, and u = 

V 0 
ML . Then, the dynamic

an be written as 

˙  1 = x 2 , 

˙  2 = x 3 − N 

M 

sin x 1 − B 

M 

x 2 , 

˙  3 = u − K B 

ML 

x 2 − R 

L 

x 3 . (76)

Obviously, system (76) is in the strict-feedback nonlinear system, and f 1 = 0, f 2 (x 1 , x 2 ) =
N 
M 

sin x 1 − B 
M 

x 2 , f 3 (x 1 , x 2 , x 3 ) = − K B 
ML x 2 − R 

L x 3 . 

I. The State Feedback Case: The PWM control u(t ) is described by 

u(t ) = 

{
ms k , t ∈ [ k T , k T + δk ) , 

0, t ∈ [ kT + δk , (k + 1) T ) , 
(77)

where the variables s k , δk are designed as 

s k = sign 

(
k 1 r 

3 x 1 ( kT ) + k 2 r 
2 x 2 + k 3 rx 3 ( kT ) 

)
, 

δk = T ·
∣∣∣∣k 1 r 3 x 1 ( kT ) + k 2 r 2 x 2 + k 3 rx 3 ( kT ) 

m 

∣∣∣∣ · 100% . (78)
8565 



L. Chang, X. Shao and D. Zhang Journal of the Franklin Institute 360 (2023) 8550–8568 

 

o  

s  

I  

 

 

 

 

a  

s  
Fig. 5. Trajectory of system (76) under control (80), (81) . 

Let m = 1 , T = 0. 00001 , r = 2, k 1 = −0. 3 and k 2 = −1 . 2, and k 3 = −0. 7 . The trajectory
f system (76) under PWM control (77), (78) is shown in Fig. 4 . It can be seen that all the
tate x 1 , x 2 , x 3 are converging to zero. This illustrates the effectiveness of our design method.

I. The Output Feedback Case: For the output case, the auxiliary variables ˆ x 1 , ˆ x 2 , ˆ x 3 are
designed as 

˙ ˆ x 1 (t ) = ˆ x 2 (t ) , ˙ ˆ x 2 (t ) = ˆ x 3 (t ) , ˙ ˆ x 3 (t ) = u(t ) , t ∈ [ t k , t k+1 ) , 

ˆ x 1 (t k+1 ) = ˆ x 1 (t 
−
k+1 ) + l 1 

T 
r ( ̂  x 1 (t 

−
k+1 ) − y(t k+1 )) , 

ˆ x 2 (t k+1 ) = ˆ x 2 (t 
−
k+1 ) + l 2 

T 
r 2 ( ̂  x 1 (t 

−
k+1 ) − y(t k+1 )) , 

ˆ x 3 (t k+1 ) = ˆ x 3 (t 
−
k+1 ) + l 3 

T 
r 3 ( ̂  x 1 (t 

−
k+1 ) − y(t k+1 )) , 

(79)

where t k = kT . Then, based on the variables ˆ x 1 (t ) , ˆ x 2 (t ) and ˆ x 3 (t ) , we design the PWM
control as ( Algorithms 1 and 2 ) 

u(t ) = 

{
ms k , t ∈ [ k T , k T + δk ) , 

0, t ∈ [ kT + δk , (k + 1) T ) , 
(80)

where the variables s k , δk are 

s k = sign 

(
k 1 r 3 ˆ x 1 ( kT ) + k 2 r 2 ˆ x 2 ( kT ) + k 3 r ̂  x 3 ( kT ) 

)
, 

δk = T ·
∣∣∣ k 1 r 3 ˆ x 1 ( kT ) + k 2 r 2 ˆ x 2 ( kT ) + k 3 r ̂ x 3 ( kT ) 

m 

∣∣∣ · 100% . 
(81)

Let r = 4, T = 0. 00001 , m = 1 , l 1 = −1 . 1 , l 2 = −1 . 2, l 3 = −0. 7 , k 1 = −0. 3 , k 2 = −1 . 2
nd k 3 = −0. 7 . The system trajectory is shown in Fig. 5 . One can see in Fig. 5 a that the
ystem states x 1 (t ) , x 2 (t ) and x 3 (t ) converge to the equilibrium point x = 0, and in Fig. 5 b
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hat the variables ˆ x 1 (t ) , ˆ x 2 (t ) and ˆ x 3 (t ) also converge to the equilibrium point ˆ x = 0. This
erifies the effectiveness of Theorem 2 . 

. Conclusion 

This paper proposed a novel method to design the PWM control. Considering the discon-
inuous character of a PWM signal, we analyzed the switching performance of the system
ynamics. Through modelling the pulse width as a parameter, both the state feedback case and
he output feedback case were considered. It was proved that under a certain condition on the
WM amplitude and sampling size, the asymptotic convergence could be achieved for a class
f strict-feedback nonlinear systems. Two examples were given to illustrate the effectiveness
f our proposed method. In the future, the following aspects can be further investigated: 1,
he PWM control can be designed to cope with the system disturbance, and the robustness
nalysis can be studied; 2, the PWM control can be studied for more complex nonlinear
ystems involving other factors such as delays, uncertain coefficients, uncertain nonlinearities.
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