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Abstract

This paper studies the PWM control problem of a class of nonlinear systems. During a modulation
period, the PWM control signal maintains a pulse waveform with tunable width and fixed magnitude.
The PWM control only possesses finite states, and has relatively limited control capability. This causes
the degradation of system performance, and even the instability when implementing into a nonlinear
system. We will introduce a novel method to design both the state feedback stabilizer and the output
feedback stabilizer for strict-feedback nonlinear systems via the PWM control. The system performance
is analyzed in a novel framework and the stability criteria is derived to ensure the system convergence.
At last, two examples are considered to illustrate the effectiveness of our proposed method.
© 2023 The Franklin Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Designing the stabilizing controller plays a crucial role in the study of control systems [1].
The advent of computer-based and digitally networked control systems requires the analogue
plant outputs and the control variables be finite bit-strings or discrete symbols for storage,
manipulation and transmission [2]. This process of converting a continuous-valued variable
into a finite-valued one entails a potentially significant loss of resolution. The system perfor-
mance is unavoidable to be degraded, even results in the system instability. Thus, it is desired
to stabilize the system by studying the digital controller.
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The nonlinear phenomena are unavoidable in nature, and many results has been report-
ing the related algorithms on nonlinear systems [3,4]. The strict-feedback nonlinear system
belongs to an important class of nonlinear systems. There are three main approaches to de-
sign the control for this system. One is the backstepping method, where the control input is
achieved based on a series of auxiliary input. A detailed design process was introduced in
[5], and some recent develop results could be seen in [6—10]. Another design technology is
based on high gain feedback control, where the control is characterized by a parameter and
this parameter is determined through analyzing the system nonlinear terms. It was widely
considered in [11-14] to design the stabilizing or regulating controller for strict-feedback
nonlinear systems. The last is the intelligent control, where the fuzzy technologies or the
neural technologies are utilized to approximate the system nonlinear terms. For example,
based on the fuzzy approximate approach, [15] combined the high-gain observer and the
adaptive design method to solve the tracking problem for the strict-feedback nonlinear sys-
tems. [16] employed the neural network to approximate the uncertain nonlinear dynamics and
developed the backstepping method to give the tracking controller. In [17], after using fuzzy
logic systems (FLSs) to estimate the unknown nonlinear functions, the backstepping method
was applied to the design of adaptive fuzzy controller. However, the designed controllers in
above results have a continuous form, and the performance of digitization is needed to be
further analyzed.

There are some existing results focusing on the digitizing controller problem for the strict-
feedback nonlinear systems. One point is considering the sampled-data control. In this case,
the analogue outputs or states are measured at the sampling instants, and then the designed
control signal is holding during a period. For example, [18] studied the sampled-data out-
put stabilization problem for the strict-feedback nonlinear systems based on the high gain
feedback control method. For the large-scale systems, [19] designed the tracking controller
when the interconnections between subsystems were unknown. Another point is considering
the quantized control. The process of quantized signal is to map an infinite set of continuous
values into a finite set of quantized values. For nonlinear system, some design problems of
quantized controller were solved in [20-22]. Specially, [23] gave a quantized controller for
the strict-feedback nonlinear systems when the nonlinear terms were unknown. But, it is noted
that the control input generated by the sampling and the quantizing has infinite states.

The pulse width modulation(PWM) can be seen as a kind of quantized scheme. It converts
the signal into two or three levels, which corresponds to the ON-OFF switching of the actu-
ator (or controller) [24]. Such an ON-OFF characteristic is also beneficial to encode desired
continuous-time information into digital bits, which aligns with nowadays wireless communi-
cation paradigms. In the context of PWM control, the time is partitioned into a series of equal
cycles, and then the PWM control signal turns the actuator ON over a portion of each cycle
and switches it OFF during the rest of the cycle. However, it should be pointed out that the
ON-OFF switching actuator (or controller) introduces strong nonlinear characteristics such as
discontinuity and saturation to the system. It is for this reason that a direct implementation
of PWM control may not yield satisfactory performance. Much research effort has therefore
been devoted to determining the PWM duty cycle fulfilling the required system performance
[25-27]. So far, several attractive methods have been developed in the past few years, such
as sliding mode control [28,29], hybrid control [30,31], and LQ optimal control [32,33]. Nev-
ertheless, it is noteworthy that the inherent nonlinearity of the physical systems concerned in
these studies is unfortunately neglected, which implies that the desired control performance
may not be preserved in realistic scenarios as most practical control systems are complexly
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nonlinear. As a result, the following two essential challenging issues are identified for achiev-
ing the PWM controller design of strict-feedback nonlinear systems: 1) how to ensure that
the finite level states could stabilize the strict-feedback nonlinear system? and 2) how to cope
with both the inherent nonlinearity of systems and the nonlinear character of PWM signal?
To the best of our knowledge, the above two issues remain challenging in the PWM control
literature, which motivates this study.

In this paper, we develop a novel PWM controller design method that provides feasi-
ble solutions to the above two questions. The specific features are summarized as follows.
1) The strict-feedback nonlinear system is stabilized through a PWM signal involving three
states. Different from the continuous-time controller [14—16], the sampled-and-hold controller
[18,34], and the quantized controller [35,36], we present a novel method to design the stabiliz-
ing controller which only switches between three states —m, —1, and m. Although the PWM
signal can approximate the continuous-time signal with a small sampling size, the approxi-
mating error still exists and degrades the system performance. 2) A novel stable analyzing
method is presented to ensure the convergence of the generated closed-loop system. Inspired
by [37.38] which considered the hybrid observer, we extended the results to study the PWM
control due to the impulse character. Through establishing a new relation for matrices, the
convergence of the generated closed-loop system is guaranteed.

The remainder of this paper is structured as follows. We will describe the problem in
Section 2. The state feedback controller will be designed in Section 3, while the output feed-
back controller will be discussed in Section 4. Two examples will be present in Section 5 to
illustrate the main results. Some ending remarks will be summarized in Section 6, while a
reference list will end this paper.

Notation: We employ || - || to denote the Euclidean norm for vectors, or the induced Eu-
clidean norm for matrices. We use I to denote an n x n identity matrix. sign(-) is the signum
function defined as: sign(x) = —1 if x < 0, sign(x) =0 if x =0, and sign(x) =1 if x > 0.

2. Problem formulation

The strict-feedback nonlinear system addressed in the paper is

Xi(t) = xi01 @) + fi(x1 (), x2(8), ..., x:(2)), i=1,2,...,n—1
X (1) = u(t) + fu(x1 (), x2(1), ..., X0 (1)),

() = x1 (1), (1)
where x; is ith element of system state x = (x1, x, .. ., xn)T € R*, u € R is the system input,
y € R is the system output. The initial instant #, is assumed as 0, and the initial state is
x(tp) € R". The nonlinear function f; (i = 1, 2, ..., n) is continuous and satisfies the following
assumption.

Assumption 1. For any xi, xp, ..., x, € R, it holds that
IfiGxr, x2, oo x)l < Ol + x| + ...+ ), i=1,2,....n, (2)

where 6 is a positive constant.

Remark 1. System (1) under Assumption 1 is called the strict-feedback nonlinear system.
Many existing results have been reporting on the control design for such nonlinear systems.
For example, the output feedback control [12,15] designed the controller which is a continuous

8552



L. Chang, X. Shao and D. Zhang Journal of the Franklin Institute 360 (2023) 8550-8568

signal; the sampled-data controller and the event-triggered controller was respectively designed
in [18,34,38,39]; the quantized controller was given in [36]. Noticed that the values of all the
above designed controllers were infinite. The problem is unsolved, as far as we know, that
using finite values to stabilize the strict-feedback nonlinear system. This motivates this work.

The system state/output is measured at the instants #;, = k7 with T > 0 being the sampling
size, and k =0, 1,2, ..., being the sampling index. We propose the following three-level-
state-dependent PWM control law to stabilize the system (1):

u(ty = 1% t € [t, ik + k),
o 07 te [tk + 8k$ tk+l)9

where m is a prescribed positive constant representing the amplitude of the PWM signal,
sk € {—1, 1} represents the sign of the pulse during the kth sampling period, and §; is known
as the pulse width during the kth sampling period. To make the PWM signal well-defined, it
is required that 0 < §; < T. Then, the duty cycle of the PWM is defined as

3

5
di = ?" -100% € [0%, 100%)] 4

which describes the proportion of on time to the regular interval T. In particular, when the
control is off during kth sampling period, it has a duty cycle of dy = 0%. A low duty cycle
corresponds to a low power of the control because the power is off for most of the time.
Since the PWM control has only three states, it has relatively limited control capability.

It can be seen from (3) that the PWM control signal u(z) is determined by two variables
dy and si. Therefore, the main objective of this work is to design the two controller variables
dy, sy to achieve the stabilizing controller. Specifically, we consider the following two aspects:

* Designing the state feedback controller: Based on the measured state x (), proposing the
PWM controller (3) such that the resulting closed-loop system is asymptotically stable at
the equilibrium point x = 0.

* Designing the output feedback controller: Based on the measured output y(#;), designing
the auxiliary variable x(¢) and the PWM controller (3) such that the resulting closed-loop
system is asymptotically stable at the equilibrium point x = 0, £ = 0.

3. State feedback control
3.1. Control design

The design of PWM control signal is mainly to determine the sign s; and the duty cycle
dy. In order to design these values, we introduce the auxiliary variables

1 1 1
71(t) = ;xl(t), 2() = r—zxz(l), e Zp() = Fxn(t)’ (%)
where r > 1 is a parameter to be designed.
By denoting z = (z1, 22, ..., 2,)7, we design
n+lK t
s = sign(Kz(t)), di = |2 1000, (6)
where K = (k1,ky, ..., k,,)T with k; to k, be the coefficients of a Hurwitz polynomial p(s) =

ST kst 4+ k.
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From (6), to ensure d; < 1, we need a sufficient large amplitude m. It is reasonable to
consider such a constant m. The strict-feedback nonlinear system is in complex form, and the
control need a certain power. Then, the following relation is holding:

rn+1KZ(tk)
dy '

msy =

N

3.2. Stability analysis

Theorem 1. Supposed that Assumption 1 is satisfied. For any initial state x(ty) € R", through
choosing appropriate sampling size T and control parameter r, system (1) can be stabilized
through the PWM signal (3), (6) if the PWM amplitude m is sufficient large.

Proof. For the auxiliary variables z = (z1, 22, ..., z,)7, we obtain
. 1
z(t) = rAz(t) + r—nBu(t) + F (1), (®)
where
0 1 0 0 0 LA @)
0 0 1 0 0 L0 (), x2(2))
A= = B= | F@O) = : )
0.0 0 - 1 0 T e 1 (0, X (1)
000 - 0 1 LHG®), . X1 (1), X (1))
Solving the above equation get
tht1 1 L1
2(terr) = € T2(1) + / e’A("“_‘)r—nBu(s)ds—i— / A= (5)ds. (10)
Ik I
Substituting the input (3), (6) into the above equation, we express the second item as
Trt1 l rT 1 s
/ e A=) _ By (s)ds = f AT — Bu(tk + —)ds
4 i 0 rn+ r
1oy 7oy 1
= / ATIBKz(t)ds = / eA(’T_S)ﬁBmskds
0 0 r
1 rdkT
=— AT=9BKz(1)ds. (11)
d Jo
Let
1 T
M(a, 1) = (e"‘A + —f eA(“_S)Bde) (12)
T Jo

be a matrix function defined on [0, 1] x (O, 1].
From (10), we get the closed-loop system as

2(trs1) = MO T, d)z(te) + F (1), (13)

where F (1) = f;f“ A=) F (5)ds.
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Noted that the choice of K can make the matrix A + BK be Hurwitz. A positive definite
matrix P can be found to meet

(A+BK)'P+P(A+BK) < —I. (14)
Let the Lyapunov function be Vi = z7 (#)Pz(#). Then, it holds

- T -
Ven = (MOT, doz) + F ) P(MGT. doyzw) + F @)
=" (t)M" (rT, d)PM(rT, di)z(tx)
+27" @M (rT, di)PF (1) + FT (1tx)PF (1). (15)

To continue, we need to analyze the matrix function M («, 7) and the nonlinear function
F(#;). On the one hand, the derivative of M («, t) satisfies

M@ T) _ ypun 1y / Y @ ) e (16)
oo T Jo

and

3*M (o, T)
da2

Considering the function

o, t,v) =vIMT (o, T)PM (o, T)v, Vv e {v||v| =1}, (18)

1 ™o
= A% 4+ —A? / ACIBKds + A CTTYIBK + A(1 — 0)AVTDYBK. (17)
T 0

we get

do(a, T,Vv)
da

2 d*w(a, 7,v)
a —_—

w(a,7,v) =w0,1,v)+a ) (19)

a=0 dO[Z a=E
where & € [0, 1].
On the other hand, due to A” = 0, it holds

1 at n 1 . .1 ;
_/ ACTIBKds =) — ATBKa (1= (1 - 1))
T Jo =0 (] + 1)' T

n 1 ) ) )
= A'BKo/ T (1 4+ (1 — A =1)). 20
12(;(141)! I+ -0 ..+ d-D)) (20)

We get that M («, ), dM (o, T)/dc and 8°M («, T)/da? are bounded.
Then, a constant «,, can be found such that
1
w(a,t,v) <w(,t,v) — EOlVTV, o € [0, a,] 21

where M (a, T)/00t|o—o = —vT v is utilized.
Since v is arbitrarily chosen in {v | ||v|| = 1}, one obtains

MT(a, T)PM(a, 1) <P — %I, ae€0,a,], Te€l0,1] (22)
Back to (50), we turn to estimate the nonlinear term F (#;). Under Assumption I, we get

1 .

F|ﬁ(x1,x2w-~,xi)|59(|Zl|+|12|+~-+|zi|)§9ﬁ||z||v i=12,....n, (23)
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which further yields
IF@I < Onllzll.
Meanwhile, it holds
d . 1
EIIZ(I)II <z = rllAlllz1 + EIIBIIIM(I)I + Onllz@)],

and

tx+d
/ lu(s)lds = [rKz(t)| < rlIKIllz(z) .

I

In (25), integrating the left part from # to t (¢ € [, tx+1)), one gets

1
lz®I < llz@) Il + (rllAll +9n)/ lz(s)lids + IBIIIK Hz(@) -
Tk
Then, using the Gronwall’s inequality, one obtains

izl < (1 + IBIIK e A=) 7 1y

In this case, the nonlinear term F (7;) is estimated as below:
- Tkt
[Fao] = [ e opr s
73

/381
5/ gnerHAII(le—s)(l+”B””K”)e(rIIAH-&-Gn)(S—lk)”Z(tk)”ds

3

Tkt
< / one’ A (1 4 | BIIK e 1200 lds

3

< A+ IBIIKID (™ = 1)1zt

Thus, back to (50), we get that, when rT < «,, it holds
T 2 T T ; o T -
Virr = Vi 7||Z(tk)” + 2z ()M (T, d)PF () + F* (1) PF (1)
rT
= Vi = - lz@) I + 2 P11+ [BIIKIDe™ (7 = 1) lz(t0)11

n 2
+IPICL+ [IBIIK ) e AN (T — 1) [zt

where @ is the upper bounded of ||M («, )| on the area [0, 1] x (0, 1].
When T € (0, 1], it holds

M —1<T(—1).

Thus, when

n n 2
r= 8@ [PII(1+ IBIIK e (¢ = 1) + 41PICL+ [IBIIK ) (™ —1)7,

we get

rT 5
Vi1 <Vie — T”Z(tk)” .
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This indicates the convergence of V,. Since r is a constant, it is easy to conclude that
system (1) under PWM control (3), (6) is stable at equilibrium point x = 0.

The last work is to discuss the choosing of m.

It is needed that m > |r"*'Kz(t;)| for any index k. Since

Vil Ve ... 5V (34)
we get
Vk VO
el n+1 e+l n+1
Kz(t < K 1, < K < K
|r zZ(t)| < UKzl < P I/ o P) = P o (P)
Amax (P) Amax (P)
<K lz@o) Il < F"IKIl, [ < llx @)l (35)
Amin(P) Jmin (P)

Thus, m need to be chosen to meet

Amax (P)
)\min (P)

which would satisfy the requirement. This ends the proof. [

m = r"|K|| llx @)l (36)

The design process can be summarized as Algorithm 1:

Algorithm 1: Implementation of State Feedback PWM Controller.

/* 0ffline Design */
1 Given the matrices A, B in (9), select K7 € R”, and P € R™" such that (14) holds;
2 For the obtained K and P, compute constant «,, in (21) and choose a suitable r
satisfying (32);
3 Based on the parameter r, choose the sampling size T satisfying rT < a,;
4 For given area Q2 with x(fp) € 2, get the amplitude m satisfying (36);
/* Online Design */
5 while 7 € [1, Ik+|) do
6 | Determine sy, d; according to (6);
7 | Update the sampling index k = k + 1;
8 end

4. Output feedback control
4.1. Control design

In many scenarios, the system state is not available. In this section, we consider the design
problem of output feedback control. Based on the observer design technology proposed in
[38], we consider the variables as

K(t) = AR(t) + Bu(t),t € [, 1),
Rt = 2(i51) — TTLCHi5) — ¥(054))- 37
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where
o1 0 --- 0 0
0 0 1 0 0
A=]: @ . B=|:|. ¢c=(1 0 0 - 0). (38)
o 0o 0 --- 1 0
0 0 O -0 1
Here, T :diag{%, r%, el ri} where r > 1 be a parameter to be designed. Vector L is the

observer gain to be determined.
Then, through considering the state transformation z(z) = I'x(z), we design

r”“Kz(tk)

se = sign(Kz(ty)), di = - 100%, (39)

where vector K is the control gain to be determined.

4.2. Stability analysis

Theorem 2. Supposed that Assumption 1 is satisfied. Let vectors K, L be designed to satisfy
T
A+BK -LC A+BK —-LC
< 0 A+Lc> P+P< 0 A+LC>5_” “40)

where P is a positive definite matrix.

For any initial state x(ty) € R", through choosing appropriate sampling size T and control
parameter r, system (1) can be stabilized through the PWM signal (3), (6) if the PWM
amplitude m is sufficient large.

Proof. Considering the error state e(t) = I'x(f) — z(¢), we obtain
e(t) =rAe(t) + F(1),1 € [tx, tiy1),
e(tyr1) = I+ rTLC)e(tk_H), 41)

where

Lf @)
L A0, x()
F() = : (42)

e fut (1 (1), 22(8), L X1 (1))
%fn(xl (t)a xZ(t)’ e 7-xn—l(t)7-xn(t))

Meanwhile, under the state transformation z(¢) = I'x(z), the dynamic (37) is transformed
into

1

2(ter) = Z(tl:-rl) - rTLCe(t,:H), 43)

Solving the above equations get

/58]
e(tip1) = I+ rTLC)e ™ e(ty) + (I + rTLC) / AU =IE (5)ds. (44)
173

8558



L. Chang, X. Shao and D. Zhang Journal of the Franklin Institute 360 (2023) 8550-8568

and

Tk+1 1
2(tes1) = Tz (t) + / ™) — Bu(s)ds
T

Ik

Tet1
—rTLC (erTAe(tk) + / erA(’”‘_s)F(s)ds). (45)

I

For the control input, we have the relation

tit1 1 T 1 N

/ e A=) _ By (s)ds = f eA(’T_S)—Bu(tk + —)ds

rh pitl r
173 0

réi i 1
=/ eA(’T_S)BKz(tk)ds=/ AT Bmsds
0 0 rn+1

1 rdkT
= AT=IBKz(1)ds. (46)
0
Let
eh 4 L fow A BKds —aLCe™
M(x,t) = ( T (I + aLC)e™ “n

be a matrix function defined on [0, 1] x (0, 1]. From (44) and (45), we get the closed-loop
system as

Z(tr1) = M(rT, dz(t) + F (1), (43)
where Z(1) = (" (t), eT(t))T, and

- B —rTLC ftzk“ e A= F (s)ds

F) = ((I + rTLC) j;kﬂ erA(tk+1S)F(s)ds> 49)

Let the Lyapunov function be Vi, = Z7 (t)PZ(t.).
Then, it holds
~ T ~
Vi = (M(rT, d)Z (1) + F(tk)> P(M(rT, d)Z (1) + F(tk)>
=Z" (t)M" (T, d)PM (rT, d)Z () + 22" (t)M” (rT, di) PF (1)
+FT (1)PF (1;). (50)

To continue, we need to analyze the matrix function M(«, t) and the nonlinear function
F(t;). A similar analysis with the state feedback case can also get a positive constant o,
such that

MT (a, T)PM(a,7) < P — %1, ael0,anl, Telo, 1l (51

Back to (50), we turn to estimate the nonlinear term F (tx). Under Assumption I, we get,
fori=1,2,...,n,

1 1 1

Sl a0 = 0( | -x| + x|+ 2 < 0/n(lzll + llel), (52)
which further yields

IF N < n(lzll + llel). (53)
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Meanwhile, one obtains
d )
EIIE(I)II < lle® < rllAllle@l + On(lizll + llell),
and
d . 1
Ellz(t)ll <z = rllAlllz1 + r—nllBlllu(t)l-

It holds

tx+d
/ lu(s)lds = [rKz(t)| < rlIKHlz(@) .

173

In (54), integrating the left part from #, to t (t € [f, tx+1)), one gets

eI < lle@)ll + (rllAll + 6n) /l[ lle(s)llds + On /tt lz(s)llds,
and k k
lzOIF < llz@) Il + rllAll /tl lz(s)llds + IBINK [zl
Then, it holds k
izl + lle@l < A+ IBIIKID Uz @) + el
+(rllAll + 6n) /,kt (z@ 1l + lle@)Ids.

Then, using the Gronwall’s inequality, one obtains

Izl + lle@l < (1+ IBIIK e A+ E (121 ) || + e )
< V2(1 + B IK|[)e A C=10) 7 (1)].

In this case, the nonlinear term ftik“ Al =9 F (5)ds is estimated as below:

Tt
/ A= (5)ds

3

et
< / er”AH(’“‘ﬂ)||F(s)||ds

Ik

Tkt
5/ GnerHA”(n‘“ﬁ)ﬁ(l—i—||B||||K||)e(r”A”+0”)(37’k)||Z(tk)||ds

Ik

/8]
< / one’ AL/ 2(1 + IBINIK 1)e™ C~ N Z (1) |l ds

173

< M2+ IBINKID (7T — DIZ (8-

which further yields

F) = —rTLC f:‘“ e A= F (s)ds
CTNUHTLO) [F A IF (5)ds

|F o] =20+ 1Lehe a+ iK™ - )izl
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Thus, back to (50), we get that, when T < «,,, it holds
T 2 T T ~ ST -
Vier < Vi = 1 Z@I* + 22" (oM" (T, d)PF (1) + FT @)PF (1)
rT
<Vi— 7||Z<zk>||2 + 4w ||Pl[(1 + [LCHe" (1 + IBINIKID (" — 1) Z @)

FAIPIC+ ILCI (1 + IBIIK DM (T — 1) 112 @), (64)

where @ is the upper bounded of ||M («, t)| on the area [0, 1] x (0, 1].
When T € (0, 1], it holds "7 — 1 < T(eO” — 1). Thus, when

r> 16w ||P[[(1 + ILCIH (1 + IBIIK e (e — 1)

FI6]IP[ (1 + ILCID>(1 + IBIIK D2 (7 — 1), (65)
we get
rT 2
Vigr = Ve = @)l (66)

Therefore, the convergence of V is ensured. Since r is a constant, it is achieved that system
(1) under PWM control (3), (39) is stable at equilibrium point x = 0, £ = 0.

The choosing of m is depended on both the initial system state x(0) and the initial observer
state £(0). In detail, it is needed that m > |[r"*'Kz(#;)| for any index k. Since Vi < Vi <
... <=V we get

Vk VO
n+1 n+1 n+1 n+1
Kz(t)] < Kzt < K| |———— < K
[P Kzw0] = KON < PRI s < KL
)\'max(P)
< K T max o) lleo)
)\min(P)

Amax (P)
)\min (P)

Thus, m need to be chosen to meet
A’IIléiX (P)
)\min (P )

which would satisfy the requirement.
This ends the proof. [J
The design process can be summarized as Algorithm 2:

= 2Kl

ol (67)

max { lx(to)|l

m = 2r"| K|l

£(to) |

2 (68)

max {1x(@0)1l

Remark 2. Our design is mainly based on the high gain feedback control method. First, we
consider a state transformation to get a new variable z(¢#) which involves a parameter r to be
determined. Then, we compute the variables s;, d; in PWM signal based on the new variable
z(t). At last, based on the Lyapunov analysis, we determine the parameter r and sampling
size T to ensure the system convergence.

Remark 3. Noticed that the main contribution in this paper is to design the stabilizing con-
troller for a strict-feedback nonlinear system via the PWM signal. The introduced method is
based on the high gain control method, and there are some limitations, such as the high am-
plitude m, the small sampling size T, and the frequent switching. Because the strict-feedback
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Algorithm 2: Implementation of Output Feedback PWM Controller.

/* 0ffline Design */

1 Given the matrices A, B, C in (38), select K7 € R, L € R and P € R*>*?" guch that
(40) holds;

2 For the obtained K, L and P, compute constant ¢, in (51) and choose a suitable r
satisfying (65);

3 Based on the parameter r, choose the sampling size T satisfying 7T < o,;

4 For given area Q with x(ty), X(fp) € €2, get the amplitude m satisfying (68);
/* Online Design */

5 while ¢ € [, t;1) do

6 | if kK # 0 then

7 | | Update the state £(z) through (37);

8 | end

9 | Determine sy, d; according to (39);

10 | Update the sampling index k = k + 1;

11 end

nonlinear system is high-order and nonlinear. To dominate such a system, a high amplitude
m and a small sampling size T may be demanded. The high amplitude m results in spike
phenomena in the system performance, since the state z(¢) ranges in a large area. Meanwhile,
due to small sampling size T, the undesired high frequent would also happen. On the one
hand, we may introduce too many inequalities in the analysis process. In most scenarios, the
convergence is still achieved, even choosing a large sampling size 7 and a small parameter r.
On the other hand, we provide a relation about these parameters, and we can comprehensively
consider all these parameters to get the stabilizing controller. For example, if the initial state
is smaller, one can choose a small amplitude m.

5. Simulation examples

Example 1. Consider the nonlinear system
X1 (1) = x2(t) +sin(xy (1))x1 (1),  x2(1) = u(t), (69)

where x = (x1, x2)7 is the system state, u is the system input. The measurement is x(k7")
in the state feedback case, and y(kT) = x;(kT) in the output feedback case, where T >
0 is the sampling size, and k is the index. Obviously, the nonlinearity sin(x;)x; satisfies
Assumption 1 with 6 = 1.

1. The State Feedback Case: The PWM control u(t) is described as

"= {81,% ST + 50, Gt D), 70
where variables sy, §; are designed as

Sp = sign(k1r2x1 (kT) + kzrxz(kT)),

5 =T- klrﬁxl(kr)r:kzmg(kT)‘ - 100%. (71)
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(a) The trajectory of state x; (), x2(?).
T —u
0.5 i
2 0
0.5} 1
1t 1 1 1 T
1 1.5 2 2.5 3
Time ¢ «1 0-3

(b) The trajectory of input u(r).

Fig. 1. Trajectory of system (69) under control (70),(71).

Letm =1,T = 0.00005, r =2, k; = —1 and k, = —2. The trajectory of system (69) under
PWM control (70), (71) is shown in Fig. 1. It can be seen from Fig. 1a that the state trajectories
are converging to zero, and the control signal in Fig. 1b is in pulse form. This illustrates the
effectiveness of our design method.

II. The Output Feedback Case: For the output case, the auxiliary variables X}, X, are designed
as

X(1) =%0), 00 =ut), 1€tk h),
R(tes) = K10 ) + LG ) — yts), (72)
(i) = Xt )+ hE &) — y(te)),
where #, = kT. Then, based on the variables X (¢) and x,(¢), we design the PWM control
as
_ Jmsg, te [kT, kT + &),
u(t) = {o, t € KT + 5. (k+ 1)T), (73)

where
Sy = sign(klrza?l (kT) + kzr.fz(kT)),

k1r2)21 (kT) + kzrxAz (kT)
m

Se=T- - 100%. (74)
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(a) The trajectory of states x;(7) and x> (7).
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Time ¢

(b) The trajectory of variables £; () and %, (7).

0.5F ]
AU Mg
1 1.5 25 3

Time ¢ %1078

(c) The trajectory of input u(r)

Fig. 2. Trajectory of system (69) under control (73), (74).

Let r =5, T =0.00005, m=5, [, =-2, I, =—1, kj = -2 and k; = —1. The system
trajectory is shown in Fig. 2. It can be seen in Fig. 2c that the control input is in PWM form.
One can also seen in Fig. 2a that the system states x;(¢), x»(¢) converge to the equilibrium
point x = 0, and in Fig. 2b that the variables X;(¢), X, (¢) converge to the equilibrium point
x = 0. This verifies the effectiveness of Theorem 2.

Example 2. Consider an electromechanical system, which is shown in Fig. 3
Following the result in [40], we describe the dynamic as

Mg+ Bg+ Nsin(q) =1, 75)
LI =V, — RI — Kgg,

M2 2M0R

WhereM_—+3K°+ + ,N:”;L"G—i-MOK—LUG,adB_K J is the rotor inertia,
m is the link mass, M is the load mass Ly is the link length Ry is the radius of the load, G is
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Vo
Fig. 3. Schematic of the electromechanical system.
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8 — X2
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Time ¢

Fig. 4. The trajectory of state xj(z), x2(¢) and x3(¢) in system (76) under control (77),(78).

the gravity coefficient, By is the coefficient of viscous friction at the joint, g(¢) is the angular
motor position (and, hence, the position of the load), /(¢) is the motor armature current, and
K, is the coefficient that characterizes the electromechanical conversion of armature current
to torque. L is the armature inductance, R is the armature resistance, Kp is the back EMF
coefficient, and V, is the input control voltage. The values of the parameters are chosen
as J = 162.5kg - m2, m= 0.506kg, Ry = 0.023m, My = 0.434kg, Ly = 0.305m, By = 16.25 x
103N -m - s/rad, L = 50H, R = 0.05%, and K, = Kz = 0.90N - m/A.

We also consider the variables x; = ¢, x, = ¢, x3 = ﬁ, and u = -& . Then, the dynamic
can be written as

ML

x| = X2,

. N | B

Xy = X3 — M sinmx; — MXZ,

. Kp R

X3 =u— mxz — ng.. (76)
Obviously, system (76) is in the strict-feedback nonlinear system, and f; = 0, f>(x1, x2) =

N B _ K R
— a7 Sinxp — 3722, f3(x1, X2, X3) = — 35X — 7X3.

L. The State Feedback Case: The PWM control u(t) is described by

_|msg, tel[kT, kT + &),
ue = {o, t e KT + 8, (k+ DT), 77
where the variables s;, §; are designed as
Sp = sign(lq x| (kT) + kor’xy + kyrx; (kT)),
kir3xi (kT + kor’xs + karxs (kT
S =T 17°x1 (kT') + kor~xy + k3rxs (kT ) - 100%. (78)
m
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(a) The trajectory of states x;(f), x2(¢) and x3(7).
01 T T T T —
—
— ||
@ 0.05 &3
2 0
~ 005} .
0.1 1 1 1 1
0 50 100 150 200 250

Time ¢

(b) The trajectory of variables £;(¢), £2(7) and X3(7).

Fig. 5. Trajectory of system (76) under control (80), (81).

Letm =1, T =0.00001, r =2, k; = —0.3 and k, = —1.2, and k3 = —0.7. The trajectory
of system (76) under PWM control (77), (78) is shown in Fig. 4. It can be seen that all the
state x|, xp, x3 are converging to zero. This illustrates the effectiveness of our design method.

1. The Output Feedback Case: For the output case, the auxiliary variables X, X, X3 are
designed as

F(t) =%(), N@)=x0), H@)=u®), telth, tiq),
R (tes) = K1) + L@ @) — y@r), (79)
B (ts) = B2 ) + b (R (1) — y(ter1)),
3 (trrr) = X3(t ) + LE@E L) — y(ta)),
where #, = kT. Then, based on the variables X (¢), X>(¢) and %3(¢), we design the PWM
control as (Algorithms 1 and 2)

_ [msi 1 €T, KT +8),
u(t) = {07 t € [kT + 6, (k+ 1)T), ®0
where the variables s;, §; are

se = sign(kyr>% (KT) + kor?%y (kT) + karfs (kT)),

8 =T - k3% (kT)+k2r2)r2nz(kT)+k3r)?3(kT)’ -100%.

81)

Let r=4,T7T =0.0000l, m=1, 1 =—-1.1, L, =—1.2, 5 =-0.7, ky = —0.3, kp = —1.2
and k3 = —0.7. The system trajectory is shown in Fig. 5. One can see in Fig. 5a that the
system states x;(f), xo(¢) and x3(¢) converge to the equilibrium point x = 0, and in Fig. 5b
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that the variables x;(¢), X(¢) and x3(¢) also converge to the equilibrium point ¥ = 0. This
verifies the effectiveness of Theorem 2.

6. Conclusion

This paper proposed a novel method to design the PWM control. Considering the discon-
tinuous character of a PWM signal, we analyzed the switching performance of the system
dynamics. Through modelling the pulse width as a parameter, both the state feedback case and
the output feedback case were considered. It was proved that under a certain condition on the
PWM amplitude and sampling size, the asymptotic convergence could be achieved for a class
of strict-feedback nonlinear systems. Two examples were given to illustrate the effectiveness
of our proposed method. In the future, the following aspects can be further investigated: 1,
the PWM control can be designed to cope with the system disturbance, and the robustness
analysis can be studied; 2, the PWM control can be studied for more complex nonlinear
systems involving other factors such as delays, uncertain coefficients, uncertain nonlinearities.
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