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   Abstract—This paper introduces a sampled-data and intermit-
tent-hold controller for nonlinear feedforward systems. The inter-
mittent  hold  allows  the  control  signal  to  be  held  in  a  portion  of
each  sampled  period,  which  does  not  require  the  control  to  be
persistently implemented, and thus has less control time. But, less
control time degrades the performance of a continuous-time con-
trol  system  or  even  destabilizes  it,  especially  when  the  holding
portion is sufficiently small. To tackle this obstacle, we first intro-
duce  the  notion  of  activating  rate  to  describe  the  intermittent
hold,  and give the sampled-data and intermittent-hold controller
based on some tuning parameters. Then it is proved that for any
activating  rate,  these  parameters  can  be  designed  to  achieve  the
stability  of  the  considered  systems  under  appropriately  choosing
the sampling size. Finally, simulation examples are given to illus-
trate the effectiveness of the proposed method.
    Index Terms—Adaptive  control, intermittent  problem, nonlinear
continuous-discrete system, nonlinear uncertain system, sampled-data
control.
  

I.  Introduction

THE  sampled-data  control  problem  is  an  important
research topic [1], and it aims to analyze the behavior of a

continuous-time system that  is  controlled by a digital  device.
A  digital-to-analog  converter,  such  as  the  zero-order  hold,  is
generally required to permit the system to possess a discontin-
uous input signal. However, in some scenarios, this converter
works intermittently, and the control is not persistently imple-
mented.  For  example,  spacecrafts  in [2] can  not  leave  the
engine on with a limited fuel supply and the engine only oper-
ate for a short period of an orbit period time. Other examples
were the network attack [3], [4],  and the communication net-
work was intermittently working [5].  This mechanism, possi-
bly due to constraints, failures or requirements, does not oper-

ate  continuously  but  rather  intermittent.  The  challenge  to
come is how to ensure system stability, especially for the non-
linear system which is too complex to get the solution.

The  intermittent  hold  is  introduced  to  describe  the  case
when the control input is only holding during a portion of the
sampling  periods  (see Fig.  1).  The  control  signal  with  inter-
mittent hold is a piece-wise constant, but periods of open-loop
control  are  combined  with  feedback  control.  Such  a  control
was considered in [6] when the control input is missing in the
sampled-data system. It is also related to the intermittent con-
trol [7]−[10],  where  the  continuous-time  control  signal  is
combined  with  intermittent  feedback.  The  intermittent  con-
troller  can  also  be  studied  when  the  control  direction  is
unknown [11] or  the  fault  controller [12].  Since  more  and
more  controllers  are  implemented  on  digital  computers  in
practice,  developing  the  sampling  control  with  intermittent
hold is a better choice.
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Fig. 1.     The comparison between intermittent hold and zero-order hold. The
blue line means holding the signal, while the green line means rest.
 

For a nonlinear system, designing a sampled-data feedback
controller  leads  to  challenging  control  problems.  As  summa-
rized  in [13],  there  are  usually  two  approaches  to  solve  the
sampled-data  control  problem  for  nonlinear  systems.  One
approach is first to derive a discrete-time model of the nonlin-
ear  system  by  integration,  and  then  to  design  the  controller
using the obtained discrete-time model. Through representing
the  evolution  of  the  system  state  at  sampling  times, [14]
designed  the  sampled-data  output  feedback  stabilizing  con-
troller  for  strict-feedback  nonlinear  systems.  This  approach
was  also  developed  in [15], [16] to  design  the  sampled-data
observer  for  nonlinear  systems.  However,  for  the  sampled-
data control system with intermittent hold, even if a discrete-
time  approximate  model  is  obtained  by  the  Euler  discretiza-
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tion  for  instance,  how  to  design  a  discrete-time  stabilizer  is
still  an  open  problem since  the  Euler  model  is  dependent  on
the holding length. Another approach is first designing a con-
tinuous-time controller  using classical  methods and discretiz-
ing  it.  It  is  called  the  emulation  method,  which  has  been
employed in  many results,  e.g., [17]−[19],  to  solve the stabi-
lizing  control  design  problem  for  nonlinear  systems.  For  a
zero-order hold with sufficiently small sampling intervals, the
emulation method gives  an approximation of  the  continuous-
time  control  problem,  which  guarantees  the  system  perfor-
mance under the designed controller. Different from the zero-
order  hold,  the  intermittent  hold  may  still  make  the  control
approximating the pulse control, which means that the system
stability  is  difficult  to  be  guaranteed  even  for  a  small  sam-
pling  size.  Therefore,  these  existing  approaches  require  the
data  to  be  the  zero-order  hold  during  the  sampling  cycle,
which  is  no  longer  possible  for  the  considered  intermittent
hold in this paper.

The  feedforward  nonlinear  system belongs  to  an  important
class  of  nonlinear  systems,  and  many  excellent  results  have
been obtained on stabilization problem of feedforward nonlin-
ear systems, for instance [20]−[24]. Two main approaches are
developed to design of the stabilizing controllers. One is based
on  the  saturated  method.  For  example,  the  saturation  control
design  method  was  introduced  to  design  the  stabilizing  con-
troller  for  the  feedforward  nonlinear  system  in [20],  and
recently a dynamic gain-based saturation control method was
developed  in [25].  The  low  gain  feedback  control  method  is
another  approach  to  design  the  stabilizing  controller.  It  was
introduced in [23], [26] to study a feedforward nonlinear sys-
tem,  and  developed  in [27]−[30] for  complex  or  uncertain
cases.  For  the  sampled-data  control  problem, [18], [31]−[33]
developed  the  stabilizing  controllers  by  employing  the  zero-
order hold for feedforward nonlinear systems. Since the feed-
forward nonlinear system has a tendency to be controlled by a
bounded control [34] or a saturated control [25], the study of
sampled-data feedback control  on feedforward nonlinear  sys-
tems has some advantages, such as the arbitrary sampling size.
Thus, it is necessary to study the intermittent hold for a class
of  feedforward  nonlinear  systems,  which  will  be  studied  in
current paper.

In  this  paper,  we will  address  the  issue  of  global  stabiliza-
tion when the system input is intermittent hold. Since the hold
length  can  be  varying,  the  emulation  method  for  zero-order-
hold problem becomes invalid even for a small sampling size.
Moreover,  the  discrete-time  model  of  a  continuous-time  sys-
tem  includes  an  extra  parameter.  The  difficulties  come  from
both  getting  discrete-time  model  for  a  nonlinear  system  and
building the controller for a parameter-depended system. The
contributions of this work can be characterized by the follow-
ing novel features: 1) We do not require the control to be con-
tinuously  implemented,  which  is  widely  considered  in  the
sampled-data control systems such as [18], [32], [33], and thus
reduce the control  time;  2)  It  is  proved that  for  any non-zero
holding length, the stability of the considered systems can be
guaranteed by choosing appropriate sampling size and control
parameters;  and 3) Since the holding length can be sufficient
small,  the  controller  is  approximating  the  impulsive  control.

Hence, our method builds a relationship between the sampled
zero-order controller and the impulsive control.

This  paper  is  organized  as  below:  Section  II  describes  the
stabilizing  problem.  Section  III  introduces  the  control  design
method,  and  analyzes  the  system  stability.  Simulation  exam-
ples are presented in Section IV, and the concluding remarks
are provided in Section V. A reference list ends this paper.

R Rn

∥ · ∥

xT xi(t)
x(t) xi x(t)

ti

Notations:  is the set of real numbers, and  denotes the
n-dimensional  real  number  space. I is  the  identity  matrix  of
appropriate  dimension.  denotes  the  Euclidean  norm  for
vectors, or the induced Euclidean norm for a matrix. For any
matrix x,  is its transpose. We use  to represent the ith
element of state , and  to represent the value of state 
at the instant .  

II.  Problem Formulation

The  framework  in  this  paper  is  shown  as Fig.  2.  Consider
the nonlinear system
 

ẋ (t) = Ax (t)+Bu (t)+F(u (t) , x (t)) (1)
x ∈ Rn u ∈ R

t0 0
x(0) ∈ Rn A ∈ Rn×n B ∈ Rn×1

where  is  the  system  state,  is  the  system  input.
The  initial  instant  is  assumed  as ,  and  the  initial  state  is

. Matrices ,  are in the form
 

A =



0 1 0 · · · 0
0 0 1 · · · 0
...
...
...

...

0 0 0 · · · 1
0 0 0 · · · 0


, B =



0
0
...

0
1


.
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Fig. 2.     The system framework in this paper.
 

F (u, x) = ( f1 (u, x) , . . . , fn(u, x))T

fi(u, x) : R×Rn→ R
i ∈ {1,2, . . . ,n}

The  vector  function  with
 being a continuous function with respect

to its variables for any .

tk k = 0,1,2, . . .
yk

In  this  paper,  we  assume  that  the  sampling  instants  are  a
given sequence of discrete instants , with  being
the index. Then, the measured output  is described as
 

yk =Cx (tk) (2)
C = (1,0,0, . . . ,0) ∈ R1×n [tk,

tk+1) [tk, tk +dk) [tk +dk,
tk+1) dk

u(t)
uk

u(t) = 0

where .  Each  sampling  interval 
 is  partitioned  into  two  parts:  and 
,  where  is  the  holding  length  during kth  sampling

cycle.  During  the  first  part,  the  controller  is  holding  the
signal  which is to be designed. The second part is rest, and
it is denoted . Mathematically, it is described as
 

u (t) =

uk, t ∈ [tk, tk +dk)

0, t ∈ [tk +dk, tk+1).
(3)
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dk ∈ (0, tk+1− tk]
dk→ 0

dk = tk+1− tk

[tk, tk +dk)
τk

It  should  satisfy  to  make  the  signal  well-
defined. When , the control is characterized by impul-
sivity.  When ,  the  control  is  the  conventional
zero-order  hold.  For  each  period,  the  control  is  only  activat-
ing  on  the  first  part .  We  introduce  the  activating
rate  as
 

τk =
dk

tk+1− tk
∈ (0,1].

dk

dk , 0,dk+1 = 0
tk+1

[tk, tk+1), [tk+1, tk+2) [tk, tk+2)
dk

Remark 1: It is noted that when a limited number of  are
zero,  the  problem can  be  converted  into  the  case  we  consid-
ered.  For  example,  if ,  we  can  drop  the  sam-
pling measurement at the instant , and re-write the period

 as  a  new  sampling  period .  We
repeat this process, and the holding length  is not zero.

Before giving our objective, we recall the definition of glob-
ally asymptotically stable from [35].

x(t, x0)
ẋ = ϕ(x) x(0, x0) = x0 ∈

Rn ẋ = ϕ(x)
x = 0

Definition 1 (Globally asymptotically stable): Let  be
a  solution  of  with  initial  condition 

.  The  system  is  globally  asymptotically  stable  at
equilibrium  if

ϵ > 0 δ > 01) For each  there is  such that
 

∥x0∥ ≤ δ⇒ ∥x(t, x0)∥ ≤ ϵ, ∀t ≥ 0.
x0 ∈ Rn2) For any initial condition , it holds

 

lim
t→+∞

x(t, x0) = 0.

τk Tk = tk+1− tk
uk

x = 0

Our problem in this paper is that by considering the activat-
ing rate  and the sampled size , design the vari-
able  in (3) to regulate system (1), (2) to be globally asymp-
totically stable at the equilibrium .

τk = 1Remark 2: When , the objective is to design the sam-
pled-data  control  with  zero-order  hold.  The  controller
becomes
 

u(t) = uk, t ∈ [tk, tk+1)

τk ∈ (0,1]

τk

which  was  considered  in [31] for  feedforward  nonlinear  sys-
tems.  Allowing  is  a  more  general  problem.  The
existing  methods  are  no  longer  possible  to  provide  the  sam-
pled-data controller when  is sufficient small.  

III.  Feedback Stabilization for
Feedforward Nonlinear Systems

For  a  feedforward  nonlinear,  the  nonlinearities  satisfy  the
following assumption.

θ(u) ≥ 0
i = 1,2, . . . ,n−1

Assumption  1: There  exists  a  continuous  function 
such that for , it holds
 

| fi(u, x)| ≤ θ(u) (|xi+2|+ |xi+3|+ · · ·+ |xn|+ |xn+1|)
x = (x1, x2, . . . , xn)T ∈ Rn u = xn+1 ∈ R
fn(u, x) = 0

for any  and .  Moreover,
it holds .

Remark 3: Assumption 1 is widely considered when study-
ing  the  feedforward  nonlinear  system,  such  as  the  results  in
[27]−[29], [32].  Some  physical  systems  such  as  the  rectors
chemical system [18], the nonlinear LLC resonant circuit sys-
tem [21] can be modeled as the feedforward nonlinear system
satisfying Assumption 1. The sampled-data control for such a
nonlinear  system  was  also  designed  in [31] with  the  zero-

order hold. But, the sampled-data control problem with inter-
mittent  hold  has  not  been  reported  in  the  existing  literatures,
which will be solved in this paper.  

A.  Controller Design
ukWe design the variable  in control (3) as

 

uk =K (ρk, τk) x̂k

x̂k+1 = (I+L (Tk,ρk)C)M1(Tk)x̂k −L (Tk,ρk)yk+1

+ (I+L (Tk,ρk)C)M2(Tk, τk)uk (4)
x̂k x̂0 ∈ Rn Tk = tk+1−

tk ρk

where  is updating from an initial value , 
,  and  is  a  dynamic  parameter  to  be  designed.  The  gain

matrices are
 

M1 (Tk) = eATk , M2(Tk, τk) =
w Tkτk

0
eA(Tk−s)Bds

and
 

K (ρk, τk) =
1
τk

KΓ (ρk) , L (Tk,ρk) =
Tk

ρn+1
k

Γ−1 (ρk) L

Γ (ρk) = diag
{

1
ρn

k
, 1
ρn−1

k
, . . . , 1

ρk

}
where .  Matrices K, L are  cho-
sen  such  that  there  exist  a  positive  constant γ and  a  positive
definite matrix P satisfying
 

PA0+AT
0 P ≤ −I, PD+DP ≥ γP (5)

where
 

A0 =

A+BK −LC

0 A+LC

 , D = D 0
0 D


D = diag{n,n−1, . . . ,1}

K, L, P
with .  Although  (5)  is  not  linear,  the
matrices  can  always  be  achieved,  see [23] for  more
details.

x̂k
x (t) {tk}k≥0

Remark 4: The variable  is actually estimating the system
state  at the sampling instants . Its dynamic in (4) is
the discrete-time form of the continuous-discrete observer and
gives
 

x̂(t) = Ax̂(t)+Bu(t), t ∈ [tk, tk+1)

x̂(tk+1) = x̂(t−k+1)+L(Tk,ρk)(Cx̂(t−k+1)− yk+1)

x̂(t−k+1) = lims>0,s→0 x̂(tk+1− s)

τk

where .  The  continuous-dis-
crete observer was studied in [15], [16] for sampled-data con-
trol problems. Due to its impulsive character, we extend it by
including the activating rate  to solve our problem.  

B.  Stability Analysis

ρk ρk
τk, Tk

In the control (4), the only left parameter to be determined is
. In the following, we show that  can be determined under

a condition on .
τmin ∈

(0,1] Tmax > 0 τk
Tk τk ∈ [τmin,1] Tk ∈ (0,Tmax]

ρk

Theorem  1: Under  Assumption  1,  for  any  constant 
 and , if the activating rate  and the sampling

size  are  satisfying , ,  the
dynamic  parameter  can  be  designed  such  that  system  (1)
can be globally stabilized through the control (3), (4).

xk = x(tk) k = 0,1,
2, . . .

Proof: To  analyze  the  system  stability,  we  consider  the
closed-loop  system  (1)−(4).  Denote  for 

, and from (1), we get 
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xk+1 =M1(Tk)xk +M2(Tk, τk)uk +Fk (6)

Fk =
r tk+1

tk
eA(tk+1−s)F (u(s), x(s))ds

yk+1

where .  According  to  (2),
the output  is expressed as
 

yk+1 =CM1(Tk)xk +CM2(Tk, τk)uk +CFk.

x̃k = xk − x̂kLet .  We  substitute  (3),  (4)  into  (6)  to  get  the
closed-loop system as
 

x̃k+1 = (I+L (Tk,ρk)C)M1(Tk)x̃k

+ (I+L (Tk,ρk)C)Fk

x̂k+1 =

(
M1(Tk)+

1
τk
M2(Tk, τk)KΓ (ρk)

)
x̂k

−L (Tk,ρk)CM1(Tk)x̃k −L (Tk,ρk)CFk.

To continue, we introduce two auxiliary variables
 

zk = Γ (ρk) x̂k, ek = Γ (ρk) x̃k.

Then, we get
 

zk+1 = Γ
−1

(
ρk

ρk+1

)
Γ(ρk)x̂k+1

= Γ−1
(
ρk

ρk+1

)(
M1(

Tk

ρk
)+

1
τk
M2(

Tk

ρk
, τk)K

)
zk

− Tk

ρk
Γ−1

(
ρk

ρk+1

)
LCM1(

Tk

ρk
)ek

− Tk

ρk
Γ−1

(
ρk

ρk+1

)
LCΓ (ρk)Fk (7)

and
 

ek+1 = Γ
−1

(
ρk

ρk+1

)
Γ (ρk) x̃k+1

= Γ−1
(
ρk

ρk+1

)Γ (ρk)+
Tk

ρn+1
k

LC

eATk x̃k

+ Γ−1
(
ρk

ρk+1

)Γ (ρk)+
Tk

ρn+1
k

LC

Fk

= Γ−1
(
ρk

ρk+1

)(
I+

Tk

ρk
LC

)
M1

(
Tk

ρk

)
ek

+Γ−1
(
ρk

ρk+1

)(
I+

Tk

ρk
LC

)
Γ (ρk)Fk (8)

CΓ (ρk) = 1
ρn

k
C, Γ (ρk)eATk = eA

Tk
ρk Γ (ρk)where   are employed.

Zk = (zT
k ,e

T
k )T H(α) = diag{Γ−1(α),Γ−1(α)}Denote , , and the

matrix function
 

A (α,τ) =

M1(α)+
1
τ
M2(α,τ)K −αLCM1(α)

0 (I+αLC)M1(α)


for the variables α and τ. We arrange the dynamics (7) and (8)
into the matrix form
 

Zk+1 =H
(
ρk

ρk+1

)(
A

(
Tk

ρk
, τk

)
Zk + F̃k (ρk)

)
(9)

where 

F̃k (ρk) =


−Tk

ρk
LCΓ (ρk)Fk(

I+
Tk

ρk
LC

)
Γ (ρk)Fk

 .
A (α,τ)

F̃k(ρk)
In the next, we respectively consider the matrix  and

the nonlinear term .
Since

 

1
τ

M2(α,τ) =
w α

0
eA(α−τs)Bds

A (α,τ) C∞ R×R
A (α,τ) ∂A (α,τ)/∂α

∂2A (α,τ)/∂α2 (0,1]× (0,1]

each element  in  the matrix  is  of  class  on .
Thus,  the  norms  of  matrices ,  and

 are bounded on the area .
We consider the function

 

ω (α,τ,v) = vTAT (α,τ) PA (α,τ)v
(0,1]× (0,1]×Ω Ω = {v| ∥v∥ = 1}on  the  area  with .  Using  the

Taylor formula, one obtains
 

ω (α,τ,v) = vT Pv−αvT v+
∂2ω (α,τ,v)
∂α2

∣∣∣∣∣∣
α=ϵ

α2

α ∈ (0,1] τ ∈ (0,1] ϵ ∈ (0,1] ω(0, τ,
v) = vT Pv ∂ω (α,τ,v)/∂α|α=0 = −vT v

ω(α,τ,v) C∞ ∂2ω(α,
τ,v)/∂α2 (0,1]× (0,1]×Ω

αm

for  any ,  and some .  Here, 
 and  are  employed.  It  is

noted  that  is  also  of  class ,  and  thus 
 is  bounded  on  the  area .  We  can

find a constant  such that
 

ω (α,τ,v) ≤ vT Pv− 1
2
αvT Pv

α ∈ (0,αm], τ ∈ (0,1], v ∈Ω
α ∈ (0,αm] τ ∈ (0,1]

holds  for  any .  Because v can  be
any vector in Ω, we achieve that for any , ,
it holds
 

AT (α,τ) PA (α,τ) ≤ P− α
2

P. (10)

F̃k (ρk)
Γ(ρk)F(u, x)

Then,  we  estimate  the  term .  Before  doing  this,  we
first consider . Under Assumption 1, we get
 ∣∣∣∣∣∣∣ 1

ρn+1−i
k

fi (u(t), x(t))

∣∣∣∣∣∣∣
≤ θ(u)
ρ2

k

 1
ρn−1−i

k

|xi+2(t)|+ · · ·+ 1
ρk
|xn(t)|+ |u(t)|


≤ θ(u)
ρ2

k

(√
n∥Γ(ρk)x(t)∥+ |u(t)|

)
i = 1,2, . . . ,n−2for , and

 ∣∣∣∣∣∣∣ 1
ρ2

k

fi (u(t), x(t))

∣∣∣∣∣∣∣ ≤ θ(u)
ρ2

k

|u(t)|

ρk ≥ 1 t ∈ [tk, tk+1) u(t)
uk 0 θk =max{θ(uk), θ(0)}
where  is utilized. During ,  the input  is

 or . Denoting , one obtains
 

∥Γ(ρk)F (u(t), x(t))∥

≤ θk
ρ2

k

(
n∥Γ(ρk)x(t)∥+

√
n|u(t)|

)
, t ∈ [tk, tk+1). (11)

On the other hand, considering system (1), we get 
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Γ(ρk)ẋ(t) =
1
ρk

AΓ(ρk)x(t)+
1
ρk

Bu(t)+Γ(ρk)F (u(t), x(t))

t ∈ [tk, tk+1) Γ(ρk)x(t) [tk, tk+1)when .  Then,  the  norm  of  on 
satisfies
 

d
dt
∥Γ(ρk)x(t)∥ ≤ ∥Γ(ρk)ẋ(t)∥

≤(∥A∥+nθk)∥Γ(ρk)x(t)∥+
(
∥B∥+ θk

√
n
)
|u(t)|.

öUsing the Gr nwall’s inequality, we get
 

∥Γ(ρk)x(t)∥ ≤ e(t−tk)(∥A∥+nθk) ∥Γ(ρk)xk∥

+ e(t−tk)(∥A∥+nθk)
(
∥B∥+ θk

√
n
)w t

tk
|u(s)|ds

≤ e(t−tk)(∥A∥+nθk) ∥ek + zk∥

+ e(∥A∥+nθk)Tk
(
∥B∥+ θk

√
n
) dk

τk
|Kzk |

≤ e(∥A∥+nθk)Tk ∥ek∥

+ e(∥A∥+nθk)Tk
((
∥B∥+ θk

√
n
)
Tk∥K∥+1

)
∥zk∥

(12)

t ∈ [tk, tk+1) Tk = dk/τkfor any ,  where the relation  is utilized.
Back to (11), we achieve the estimation
 

∥Γ(ρk)F (u(t), x(t))∥

≤ nθk
ρ2

k

e(∥A∥+nθk)Tk
((
∥B∥+ θk

√
n
)
Tk∥K∥+1

)
∥zk∥

+
θk

ρ2
k

√
n

1
τk
∥K∥∥zk∥+

nθk
ρ2

k

e(∥A∥+nθk)Tk ∥ek∥

t ∈ [tk, tk +dk)during , and
 

∥Γ(ρk)F (u(t), x(t))∥

≤ nθk
ρ2

k

e(∥A∥+nθk)Tk
((
∥B∥+ θk

√
n
)
Tk∥K∥+1

)
∥zk∥

+
nθk
ρ2

k

e(∥A∥+nθk)Tk ∥ek∥

t ∈ [tk +dk, tk+1)during .
∥zk∥ ≤ ∥Zk∥ ∥zk∥+ ∥ek∥ ≤

√
2∥Zk∥Then, since  and , we get

 

∥Γ(ρk)Fk∥ ≤
w tk+1

tk
e∥A∥Tk ∥Γ(ρk)F (u(s), x(s))∥ds

≤ θkn
ρ2

k

Tke(2∥A∥+nθk)Tk
((
∥B∥+ θk

√
n
)
Tk∥K∥+1

)
∥zk∥

+
θk

ρ2
k

dk

τk

√
ne∥A∥Tk∥K∥∥zk∥+

θkn
ρ2

k

Tke(2∥A∥+nθk)Tk ∥ek∥

≤ θkn
ρ2

k

Tke(2∥A∥+nθk)Tk
((
∥B∥+ θk

√
n
)
Tk∥K∥+

√
2
)
∥Zk∥

+
θk

ρ2
k

dk

τk

√
ne∥A∥Tk∥K∥∥Zk∥. (13)

Because
 

∥∥∥F̃k(ρk)
∥∥∥ ≤ ∥∥∥∥∥Tk

ρk
LCΓ (ρk)Fk

∥∥∥∥∥+
∥∥∥∥∥∥
(
I+

Tk

ρk
LC

)
Γ (ρk)Fk

∥∥∥∥∥∥
≤ (2∥LC∥+n)∥Γ(ρk)Fk∥

one achieves the estimation
 ∥∥∥F̃k(ρk)

∥∥∥ ≤ Tk

ρ2
k

σk∥Zk∥ (14)

σk θk Tk
σk = θk

(
(2∥LC∥ + n)

√
ne∥A∥Tk∥K∥ + (2∥LC∥ +

n)ne(2∥A∥+nθk)Tk ((∥B∥+ θk
√

n)Tk∥K∥+
√

2)
)where  is  the  constant  depended  on  and .  It  can

be  chosen as 
.

Now, we can analyze the stability of system (9) by employ-
ing  the  Lyapunov method.  Let  the  Lyapunov function  candi-
date be
 

Vk = ZT
k PZk, k = 0,1, . . .

Since
 

1
αγ

vTH(α)PH(α)v− vT Pv

=
d( 1

sγ vTH(s)PH(s)v)
ds

∣∣∣∣∣∣∣
s=ξ∈(α,1)

(α−1)

= (α−1)
1

s1+γ vTH(s)(PD+DP)H(s)v

−γ (α−1)
1

s1+γ vTH(s)PH(s)v

≤ − (1−α)
1

s1+γ vTH(s)(PD+DP−γP)H(s)v

≤ 0

v ∈Ω = {v| ∥v∥ = 1}
α ∈ (0,1]

holds  for  any  non-zero  vector  and  con-
stant , we get
 

H
(
ρk

ρk+1

)
PH

(
ρk

ρk+1

)
≤

(
ρk

ρk+1

)γ
P.

Thus, using the estimation (10) and (14), it is calculated as
 

Vk+1 = ZT
k+1PZk+1+

(
ρk

ρk+1

)γ
F̃T

k (ρk) PF̃k (ρk)

≤
(
ρk

ρk+1

)γ
Vk −

1
2

Tk

ρk

(
ρk

ρk+1

)γ
Vk

+2ϖ∥P∥σk
Tk

ρ2
k

(
ρk

ρk+1

)γ
∥Z∥2k

+ ∥P∥σ2
k

T 2
k

ρ4
k

(
ρk

ρk+1

)γ
∥Z∥2k

≤
(
ρk

ρk+1

)γ
Vk −

1
2

Tk

ρk

(
ρk

ρk+1

)γ
Vk

+2ϖ∥P∥σk
Tk

ρ2
k

(
ρk

ρk+1

)γ 1
λmin(P)

Vk

+ ∥P∥σ2
k

T 2
k

ρ4
k

(
ρk

ρk+1

)γ 1
λmin(P)

Vk
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∥A(α,τ)∥ (0,1]× (0,1] λmin(P)
where ϖ is  employed  to  denote  the  upper  bounded  of

 in the area , and  is the minimal
eigenvalue of matrix P.

Through choosing
 

ρk+1 = max
{
ρk

2

(
1− Tk

2ρk
+2ϖ∥P∥σk

Tk

ρ2
k

1
λmin(P)

+ ∥P∥σ2
k

T 2
k

ρ4
k

1
λmin(P)

) 1
γ ,

Tk

αm
, ρk

}
(15)

ρ0 ≥ 1with initial value , we obtain
 

Vk+1 ≤
(

1
2

)γ
Vk.

Vk Zk

0 |uk | = | 1τk Kzk | ≤ 1
τmin
∥K∥∥Zk∥

uk θk σk
σ̄ σk ≤ σ

Therefore,  is  decreasing,  and  is  bounded  and  con-
verging to . Since , we conclude
that the input  is bounded, which can ensure  and  to be
bounded. That is, a constant  can be found such that .
If
 

ρk ≥4ϖ∥P∥σ̄ 1
λmin(P)

+2∥P∥σ2Tmax
1

λmin(P)
we get
 

Tk

2ρk
≥ 2ϖ∥P∥σk

Tk

ρ2
k

1
λmin(P)

+ ∥P∥σ2
k

T 2
k

ρ4
k

1
λmin(P)

.

ρk+1 =max{ Tk
αm
, ρk}

Tk ≤ Tmax ρk Zk
0 x̂k xk

0
∥x(t)∥ [tk, tk+1) ∥xk∥

limt→+∞ x(t) = 0
x = 0

Then,  (15)  is  turned  into .  Because
, we ensure  is a bounded parameter. Since  is

converging to , we conclude that the states ,  are asymp-
totic converging to . From (12), we also get the upper bound
of  on  is  proportional  to .  Thus,  we  get

, and conclude that system (1)−(4) is globally
asymptotically stable at equilibrium . ■

A(α,τ)
(0,1]

A(α,τ) (0,1]× (0,1] r tk+1
tk

uk = KΓ(ρ)x̂k

τk ukr tk+1
tk

uk

Remark  5: The  contributions  of  Theorem  1  are  twofold:
1) A new design approach is developed to dominate the inter-
mittent hold for sampled-data control problem. This approach
is  inspired  by  the  design  principle  of  continuous-discrete
observer [14]−[16].  Different  from  their  results,  our  result
considers  the  parameter-depended coefficient  matrix ,
and the second variable τ is chosen in an open interval .
Thus,  additional  analysis  is  processed to ensure the bound of

 on the open interval . 2) It is noted that a
main  design  principle  in  this  paper  is  that 
which is utilized to achieve the estimation (12) and (13). This
means  that  even  for  a  sufficiently  small ,  the  value  of 
maybe large, but the integrating term  is bounded.

[tk, tk +dk)
dk

Remark 6: Theorem 1 presents a robust result that the con-
trol  period  is  pre-given.  We  can  extend  this  by
design the holding length . For example, the control length
is determined through a self/event-triggered mechanism.

ρk

ρk uk uk ≤ 1
τmin
∥K∥∥Zk∥ ≤

1
τminλmin(P)∥K∥

√
Vk ≤ 1

τminλmin(P) ∥K∥
√

V0 σ̄Ω
σk ≤ σ̄Ω x(0) ∈Ω Ω ⊂ Rn

Remark  7: The  semi-global  asymptotical  stability  can  be
achieved  through  designing  the  dynamic  parameter  as  a
constant  parameter  ρ.  From  the  design  (15),  the  dynamic
parameter  is  depended  on .  Since 

,  we can find  such
that  when  with  being  any  closed

set. Then, constant ρ can be chosen with the set Ω, and we can
design  a  constant  parameter  ρ  to  achieve  the  semi-global
asymptotical stability.

ρk ρk Tk
τk

θ(u) Vk
ρk

ρk

Remark  8: The  only  design  parameter  in  our  control  (4)  is
. This parameter  increases with the sampling size , the

activating  rate ,  the  system  order n,  and  the  nonlinear
growth rate . From the definition of , a high parameter

 may result in an overshoot or a slow converging rate. But,
to get  a  sufficient  condition,  we employ many inequalities  to
estimate the upper bound of the system states.  In this  case,  a
smaller parameter  may also ensure the system stability.  

IV.  Simulation

We consider two examples to illustrate the effectiveness of
our method.

Example 1: Consider a three-stage rectors chemical system.
Following the description in [18], it can be described as
 

ẋ1 =
1−R1

V1
x2+ (k1+ k2k3)x3

ẋ2 =
1−R2

V2
x3

ẋ3 =
F
V3

u (16)

x1 x2 x3
R1 R2 V1

V2 V3 k1 k2 k3

where ,  and  are respectively the compositions of the
produce streams,  and  denote the recycle flow rates, ,

 and  denote the rector volumes, ,  and  denote the
reaction constants, and u, F are the fresh feed rates.

The sampled-data output is measured as
 

yk = x1 (tk) , k = 0,1,2, . . .

tk = kTwhere  with T being the sampling size.
z1 = x1 z2 =

1−R1
V1

x2

z3 =
(1−R1)(1−R2)

V1V2
x3 v = (1−R1)(1−R2)F

V1V2V3
u

Consider  the  state  transformation , ,
, . Then, we obtain

 

ż1 = z2+ κz3, ż2 = z3, ż3 = v

κ = (k1+ k2k3) V1V2
(1−R1)(1−R2)where .

R1 = 0.4 m/s R2 = 0.3 m/s
V1 = 0.4 L V2 = 0.5 L

V3 = 0.3 L k1 = 0.2 k2 = 0.3
k3 = 0.1 F = 0.1

For the three-stage rectors chemical system (16), we choose
the parameters as below: The recycle flow rates of the rector
chemical system are chosen as  and ;
the  rector  volumes  are  chosen  as ,  and

;  the  reaction  constants  are , ,  and
; the fresh feed rate is m/s.

κ = 0.110
θ = 0.110

T = 1

It  can  be  calculated  that .  It  is  verified  that
Assumption  1  is  satisfied  with .  In  this  simulation,
we consider the periodic sampling, and the sampling size T is

. Then, the control is designed as
 

v =


− 5ẑ1,k

τρ3 −
8ẑ2,k

τρ2 −
6ẑ3,k

τρ
, t ∈ [k,k+τ)

0, t ∈ [k+τ,k+1)
(17)

ẑk =
(
ẑ1,k, ẑ2,k, ẑ3,k

)Twhere  satisfies
 

ẑk+1 = M1ẑk +M2u−M3yk.
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M1 = (I+M3C)eA M2 = (I+M3C)
r τ

0 eA(1−s)ds M3 =(
− 6
ρ ,−

12
ρ2 ,− 8

ρ3

)T
A =

0 1 0
0 0 1
0 0 0

 C = (1,0,0)

Here, , , 

, , .

ρ = 15 τ = 0.2
τ = 0.4 τ = 0.6 τ = 0.8 τ = 1

x0 = (0.02,−0.02,0.05)T

z0 = (0,0,0)T

z1,z2,z3 = 0

To show the  effectiveness  of  our  compensating  design,  we
consider  the  case  of  the  semi-global  stabilization.  We  let

,  and respectively consider the activating rates ,
, , , .  The state  trajectory is  shown

in Fig.  3 with  the  initial  condition ,
.  We  observe  that  all  system  states  converge  to

the  equilibrium .  Meanwhile,  the  trajectories  are
almost  same.  Thus,  through  our  compensating  design  for  the
intermittent,  the  system  performance  is  guaranteed,  and  the
system  stability  can  be  achieved,  even  for  a  small  activating
rate τ. This makes our result significant in the study of nonlin-
ear systems.
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τ = 0.6
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Fig. 3.     Trajectory of  system (16)  under  control  (17)  with different  activat-
ing rate τ.
 

Example 2: Consider the nonlinear system
 

ẋ1 = x2+2ux3

ẋ2 = x3+u2

ẋ3 = u (18)

yk = x1(tk), k = 0,1,2, . . .
{tk}k≥0 t0 = 0 ti+1 = ti+Ti, i = 0,1, . . .

Ti [10−3,10−2].
τk [0.1,1]

u(t)

with  the  output  measurement  The
instants  are given as , and 
with  being randomly chosen in  We also ran-
domly  choose  the  activating  rate  in .  The  control

 is given as
 

u =


− 5ẑ1,k

τρ3
k

− 8ẑ2,k

τρ2
k

− 6ẑ3,k

τρk
, t ∈ [tk, tk +dk)

0, t ∈ [tk +dk, tk+1)

(19)

dk = τkTk ẑk =
(
ẑ1,k, ẑ2,k, ẑ3,k

)Twhere , and  satisfies
 

ẑk+1 = M1ẑk +M2u−M3yk.

Here, 

M1 = (I+M3C)eATk , M2 = (I+M3C)
w Tkτk

0
eA(Tk−s)ds

 

M3 = Tk

− 6
ρk
,−12
ρ2

k

,− 8
ρ3

k

T

, A =


0 1 0
0 0 1
0 0 0


C = (1,0,0)
ρk

and . Following Theorem 1, the dynamic parame-
ter  can be updated as
 

ρk+1 = max
{
ρk

2

(
1− Tk

2ρk
+24(|uk |+ e|uk |)

Tk

ρ2
k

+100(|uk |+ e|uk |)2 T 2
k

ρ4
k

)10
, 102Tk, ρk

}
. (20)

x1 x2 x3 0
x = 0

The simulation results are shown in Fig. 4. One can see that
all the system states , ,  are converging to . Thus, the
system is asymptotically stable at the point . Meanwhile,
the control input is piece-wise constant, which is the intermit-
tent-hold mechanism as  we described.  Therefore,  the  simula-
tion verified the effectiveness of our designed controller.  

V.  Conclusion

[tk, tk +dk)
[tk +dk, tk+1)

dk
tk+1−tk

∈ [τmin,1] τmin > 0

ẋ1 = x2, ẋ2 =

x3
3, ẋ3 = u?

This  paper  considered  the  sampled-data  control  with  inter-
mittent  hold for  feedforward nonlinear  systems.  We assumed
the  control  signal  to  be  holded  during  a  given  activating
period ,  and  to  be  zero  during  the  other  period

. It is proved that the stabilizing controller can be
designed  for  the  feedforward  nonlinear  system  (1)  under
Assumption  1  if  with .  The  intro-
duced  method  successfully  built  a  relationship  between  the
impulsive  controller  and  the  sampled-data  controller.  We
think  the  possible  future  works  may  consider  the  more  com-
plex  systems.  For  example,  how  to  design  the  intermittent-
hold  controller  for  the  uncontrollable  system 
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