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Global Sampled-Data Output Feedback
Stabilization for Nonlinear Systems
via Intermittent Hold

Le Chang ¥, Cheng Fu

Abstract—This paper introduces a sampled-data and intermit-
tent-hold controller for nonlinear feedforward systems. The inter-
mittent hold allows the control signal to be held in a portion of
each sampled period, which does not require the control to be
persistently implemented, and thus has less control time. But, less
control time degrades the performance of a continuous-time con-
trol system or even destabilizes it, especially when the holding
portion is sufficiently small. To tackle this obstacle, we first intro-
duce the notion of activating rate to describe the intermittent
hold, and give the sampled-data and intermittent-hold controller
based on some tuning parameters. Then it is proved that for any
activating rate, these parameters can be designed to achieve the
stability of the considered systems under appropriately choosing
the sampling size. Finally, simulation examples are given to illus-
trate the effectiveness of the proposed method.

Index Terms—Adaptive control, intermittent problem, nonlinear
continuous-discrete system, nonlinear uncertain system, sampled-data
control.

I. INTRODUCTION

HE sampled-data control problem is an important
T research topic [1], and it aims to analyze the behavior of a
continuous-time system that is controlled by a digital device.
A digital-to-analog converter, such as the zero-order hold, is
generally required to permit the system to possess a discontin-
uous input signal. However, in some scenarios, this converter
works intermittently, and the control is not persistently imple-
mented. For example, spacecrafts in [2] can not leave the
engine on with a limited fuel supply and the engine only oper-
ate for a short period of an orbit period time. Other examples
were the network attack [3], [4], and the communication net-
work was intermittently working [5]. This mechanism, possi-
bly due to constraints, failures or requirements, does not oper-
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ate continuously but rather intermittent. The challenge to
come is how to ensure system stability, especially for the non-
linear system which is too complex to get the solution.

The intermittent hold is introduced to describe the case
when the control input is only holding during a portion of the
sampling periods (see Fig. 1). The control signal with inter-
mittent hold is a piece-wise constant, but periods of open-loop
control are combined with feedback control. Such a control
was considered in [6] when the control input is missing in the
sampled-data system. It is also related to the intermittent con-
trol [7]-[10], where the continuous-time control signal is
combined with intermittent feedback. The intermittent con-
troller can also be studied when the control direction is
unknown [11] or the fault controller [12]. Since more and
more controllers are implemented on digital computers in
practice, developing the sampling control with intermittent
hold is a better choice.
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Fig. 1. The comparison between intermittent hold and zero-order hold. The

blue line means holding the signal, while the green line means rest.

For a nonlinear system, designing a sampled-data feedback
controller leads to challenging control problems. As summa-
rized in [13], there are usually two approaches to solve the
sampled-data control problem for nonlinear systems. One
approach is first to derive a discrete-time model of the nonlin-
ear system by integration, and then to design the controller
using the obtained discrete-time model. Through representing
the evolution of the system state at sampling times, [14]
designed the sampled-data output feedback stabilizing con-
troller for strict-feedback nonlinear systems. This approach
was also developed in [15], [16] to design the sampled-data
observer for nonlinear systems. However, for the sampled-
data control system with intermittent hold, even if a discrete-
time approximate model is obtained by the Euler discretiza-
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tion for instance, how to design a discrete-time stabilizer is
still an open problem since the Euler model is dependent on
the holding length. Another approach is first designing a con-
tinuous-time controller using classical methods and discretiz-
ing it. It is called the emulation method, which has been
employed in many results, e.g., [17]—[19], to solve the stabi-
lizing control design problem for nonlinear systems. For a
zero-order hold with sufficiently small sampling intervals, the
emulation method gives an approximation of the continuous-
time control problem, which guarantees the system perfor-
mance under the designed controller. Different from the zero-
order hold, the intermittent hold may still make the control
approximating the pulse control, which means that the system
stability is difficult to be guaranteed even for a small sam-
pling size. Therefore, these existing approaches require the
data to be the zero-order hold during the sampling cycle,
which is no longer possible for the considered intermittent
hold in this paper.

The feedforward nonlinear system belongs to an important
class of nonlinear systems, and many excellent results have
been obtained on stabilization problem of feedforward nonlin-
ear systems, for instance [20]—[24]. Two main approaches are
developed to design of the stabilizing controllers. One is based
on the saturated method. For example, the saturation control
design method was introduced to design the stabilizing con-
troller for the feedforward nonlinear system in [20], and
recently a dynamic gain-based saturation control method was
developed in [25]. The low gain feedback control method is
another approach to design the stabilizing controller. It was
introduced in [23], [26] to study a feedforward nonlinear sys-
tem, and developed in [27]—[30] for complex or uncertain
cases. For the sampled-data control problem, [18], [31]-[33]
developed the stabilizing controllers by employing the zero-
order hold for feedforward nonlinear systems. Since the feed-
forward nonlinear system has a tendency to be controlled by a
bounded control [34] or a saturated control [25], the study of
sampled-data feedback control on feedforward nonlinear sys-
tems has some advantages, such as the arbitrary sampling size.
Thus, it is necessary to study the intermittent hold for a class
of feedforward nonlinear systems, which will be studied in
current paper.

In this paper, we will address the issue of global stabiliza-
tion when the system input is intermittent hold. Since the hold
length can be varying, the emulation method for zero-order-
hold problem becomes invalid even for a small sampling size.
Moreover, the discrete-time model of a continuous-time sys-
tem includes an extra parameter. The difficulties come from
both getting discrete-time model for a nonlinear system and
building the controller for a parameter-depended system. The
contributions of this work can be characterized by the follow-
ing novel features: 1) We do not require the control to be con-
tinuously implemented, which is widely considered in the
sampled-data control systems such as [18], [32], [33], and thus
reduce the control time; 2) It is proved that for any non-zero
holding length, the stability of the considered systems can be
guaranteed by choosing appropriate sampling size and control
parameters; and 3) Since the holding length can be sufficient
small, the controller is approximating the impulsive control.
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Hence, our method builds a relationship between the sampled
zero-order controller and the impulsive control.

This paper is organized as below: Section II describes the
stabilizing problem. Section III introduces the control design
method, and analyzes the system stability. Simulation exam-
ples are presented in Section IV, and the concluding remarks
are provided in Section V. A reference list ends this paper.

Notations: R is the set of real numbers, and R" denotes the
n-dimensional real number space. / is the identity matrix of
appropriate dimension. ||-|| denotes the Euclidean norm for
vectors, or the induced Euclidean norm for a matrix. For any
matrix x, x’ is its transpose. We use x;(f) to represent the ith
element of state x(¢), and x; to represent the value of state x(r)
at the instant #;.

II. PROBLEM FORMULATION

The framework in this paper is shown as Fig. 2. Consider
the nonlinear system

x(t)=Ax(t)+Bu(t)+ Fu(t),x()) )

where x € R" is the system state, u € R is the system input.
The initial instant 7y is assumed as 0, and the initial state is
x(0) e R". Matrices A € R™", Be R™! are in the form

010 - 0 0
0 0 1 0 0
A= |, B=
0 0 - 0
000 0 1

—> Holding ! u()
u, : 2 : Plant

Controller Design
[Controter}

2 »0)

L Sampling

The system framework in this paper.

Fig. 2.

The vector function F(u,x)=(f(u,x),..., f,,(u,x))T with
fi(u,x) : RXR" - R being a continuous function with respect
to its variables for any i € {1,2,...,n}.

In this paper, we assume that the sampling instants are a
given sequence of discrete instants #, with k=0, 1,2,... being
the index. Then, the measured output yy is described as

yie = Cox (1) 2
where C =(1,0,0,...,0) e R*", Each sampling interval [z,
fr+1) 1s partitioned into two parts: [fg,fx +di) and [t +dy,
tx+1), where di is the holding length during kth sampling
cycle. During the first part, the controller u(f) is holding the
signal u; which is to be designed. The second part is rest, and
it is denoted u(r) = 0. Mathematically, it is described as

ug, 1€ty t+dy)
u(t) = (3)
0, te€ltx+di,tis1).
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It should satisfy dj € (0,1 —#;] to make the signal well-
defined. When d; — 0, the control is characterized by impul-
sivity. When dy = tx4+1 — 1, the control is the conventional
zero-order hold. For each period, the control is only activat-
ing on the first part [#,# +di). We introduce the activating
rate 7y as

Ty = di
¢ er1 — Ik

Remark 1: 1t is noted that when a limited number of d; are
zero, the problem can be converted into the case we consid-
ered. For example, if dy # 0,dr+1 =0, we can drop the sam-
pling measurement at the instant #1, and re-write the period
[, te+1)s [tk+1,tk+2) as a new sampling period [tx,f;2). We
repeat this process, and the holding length dj, is not zero.

Before giving our objective, we recall the definition of glob-
ally asymptotically stable from [35].

Definition 1 (Globally asymptotically stable): Let x(t,xg) be
a solution of x=¢(x) with initial condition x(0,xp) = xg €
R”. The system x = ¢(x) is globally asymptotically stable at
equilibrium x =0 if

1) For each € > 0 there is ¢ > 0 such that

€ (0,1].

[lxol] <6 = ||x(t, x0)|| < €, Yt > 0.
2) For any initial condition xp € R”, it holds

lim x(z,xg) = 0.
t—+00

Our problem in this paper is that by considering the activat-
ing rate 74 and the sampled size Ty = tx4+ — fx, design the vari-
able uy in (3) to regulate system (1), (2) to be globally asymp-
totically stable at the equilibrium x = 0.

Remark 2: When 1; = 1, the objective is to design the sam-
pled-data control with zero-order hold. The controller
becomes

u(t) =ug, t€lty,tks1)

which was considered in [31] for feedforward nonlinear sys-
tems. Allowing 73 € (0,1] is a more general problem. The
existing methods are no longer possible to provide the sam-
pled-data controller when 7y is sufficient small.

III. FEEDBACK STABILIZATION FOR
FEEDFORWARD NONLINEAR SYSTEMS

For a feedforward nonlinear, the nonlinearities satisfy the
following assumption.

Assumption 1: There exists a continuous function 6(u) >0
such that for i =1,2,...,n—1, it holds

IfiCu, 01 < Ou) (|xizo| + |Xi3] + -+ + | Xn] + X1 ])
for any x = (x1,x2,...,%,)7 €R" and u = x,,; € R. Moreover,
it holds f,(u,x) = 0.

Remark 3: Assumption 1 is widely considered when study-
ing the feedforward nonlinear system, such as the results in
[271-[29], [32]. Some physical systems such as the rectors
chemical system [18], the nonlinear LLC resonant circuit sys-
tem [21] can be modeled as the feedforward nonlinear system
satisfying Assumption 1. The sampled-data control for such a
nonlinear system was also designed in [31] with the zero-
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order hold. But, the sampled-data control problem with inter-
mittent hold has not been reported in the existing literatures,
which will be solved in this paper.

A. Controller Design
We design the variable u;, in control (3) as
g = K (or, Ti) Xk
St = U+ LTk, pr) O My(Ti) Xk = LTk, pi) Yier1
+ (I + LTk, pi) CO) Mo (T, Ti)uk “4)

where X is updating from an initial value g € R", Ty = tg41—
ty, and p; is a dynamic parameter to be designed. The gain
matrices are

T,
M (Ty) = e Tr, Mo(Ty, i) = fo K AT=9) g

and

Ty

n+1
k

I (o) L

1
K (or, 1) = T—ka(pk), L(Ti.pr) =

1

where I'(ox) = diag{pLZ’F"“’;%k}' Matrices K, L are cho-
k

sen such that there exist a positive constant y and a positive
definite matrix P satisfying

PAy+ AP < -1, PD+DP>yP (5)

a A+BK -LC D D 0
" o a+rc) T lo b
with D = diag{n,n—1,...,1}. Although (5) is not linear, the
matrices K, L, P can always be achieved, see [23] for more
details.
Remark 4: The variable X is actually estimating the system
state x(¢) at the sampling instants {#;}>,. Its dynamic in (4) is

the discrete-time form of the continuous-discrete observer and
gives

where

#(t) = AR + Bu(t), 1€ [te,tis1)

Ktge1) = £t ) + LTk, pi)(CE(ty 1) — Yier 1)
where X1, ) = limgs0 550 £(fer1 — 8)- The continuous-dis-
crete observer was studied in [15], [16] for sampled-data con-
trol problems. Due to its impulsive character, we extend it by
including the activating rate 7 to solve our problem.

B. Stability Analysis

In the control (4), the only left parameter to be determined is
Pk In the following, we show that p can be determined under
a condition on 1y, Tk.

Theorem 1: Under Assumption 1, for any constant Tp, €
(0,1] and Ty > 0, if the activating rate 74 and the sampling
size Ty are satisfying 7¢ € [Tmin, 1], Tk € (0, Tmax], the
dynamic parameter p; can be designed such that system (1)
can be globally stabilized through the control (3), (4).

Proof: To analyze the system stability, we consider the
closed-loop system (1)—(4). Denote x; = x(t;) for k=0,1,
2,...,and from (1), we get
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Xr1 = Mi(T)xp + Mo(Ti, Ti)ug + T (6)
where Fi = f[k“ Al F (u(s), x(s))ds. According to (2),
the output y4+ is expressed as
Yir1 = CMy(T)x + CMo(Ty, ti)uy + CF.

Let % = xx — Xx. We substitute (3), (4) into (6) to get the
closed-loop system as

I+ LTy, pr) O) My (Ti) 5
+U + LTy, pr) O) Fr

Xkv1 =

1
K1 = (Ml(Tk)+ T—kMz(Tk,Tk)KF(Pk) X

= LTy, pr) CMi(Ti) Xk — LTk, pi) CF.

To continue, we introduce two auxiliary variables

2 =T (o) &k,  ex =T (ox) X
Then, we get
T+l = ( Pk )F (oK) Xrr1
Phk+1
( "l)(M1<—>+—M2(— rk)K)
——F 1( Pk )LCMl(ﬂ)ek
Phk+1 Pk
——r 1( P )Lcrmkm ™
Plk+1
and

2 pPr .
ere1 =T (p—)F(Pk)xk+1
Pk+1

=T ( Pk )(F(pk)+ LLC] ATk g,
o

Ph+1 %
Ty
+ I ( )[F(p )+—LC]7—'k
Pk+1 pk

Gl g e

+I™ ( )(1+ —LC)F(pk)ﬂ ()
Pk+1 Pk

where CT (px) = ,,C T (o) AT = ¢ n I"(or) are employed.
Denote Z; = (zk, eD!, H(a) = diag{l'(a),I' ! (@)}, and the
matrix function

Mi(a)+ %Mz(a/, K —aLCM;(a) ]
0 (I +aLC)M,; (@)

for the variables o and 7. We arrange the dynamics (7) and (8)
into the matrix form

T
Zi+1 =7‘(( Pk )(ﬂ(—k,ﬂc
Plk+1 Pk

ﬂ(a/,‘r)z[

)Zk+Fk (Pk)) 9

where
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T
~—LLCT (o0 Fi
- k
Fi (o) = .
Ty
(1 + —Lc)r(pk)ﬂ
Pk
In the next, we respectively consider the matrix A(«@,7) and

the nonlinear term F (o).
Since

1
- M(a,1) = fa AT By
T 0

each element in the matrix A(a,7) is of class C* on RxR.
Thus, the norms of matrices A(a,7), 0A(a,7)/0a and
8*A(a, 1) /da? are bounded on the area (0,1]x (0, 1].

We consider the function

w(a,1,v) = v Al (a,7) PA(a,T)V
on the area (0,1]x(0,1]xQ with Q = {v|||v|]| = 1}. Using the
Taylor formula, one obtains

8w(a,t,v) 2

aaz a=€
for any @ € (0,1], 7€ (0,1] and some € € (0, 1]. Here, w(0,7,
v)=vI' Py and dw(a,T,v)/dal,—o = —v'v are employed. It is
noted that w(a,t,v) is also of class C*®, and thus ’w(a,
7,v)/0a? is bounded on the area (0,1]x(0,11xQ. We can
find a constant «,, such that

w(a,1,v) = viPy—avTy +

1
w(a,1,v) < v py— Ea/vTPv

holds for any a € (0,a,,], 7€ (0,1], v € Q. Because v can be
any vector in Q, we achieve that for any a € (0,a,,], T € (0,1],
it holds

AT (@, 7) PA(a,7) < P—%P. (10)

Then, we estimate the term Fy (o). Before doing this, we
first consider I'(og)F'(u, x). Under Assumption 1, we get

— fi (u(®), x(1))

n+1-i
k

o ( 1 !
<— [m|xi+2(f)| +oo e — X (O] + ()]
Py \Py Pk

6
< 29 (TGl + o))
k

fori=1,2,...,n—2,and

0(u)
zfz(u(t) x(1)| < —I 0]
P o
where py > 1 is utilized. During ¢ € [t,;+1), the input u(z) is
ug or 0. Denoting 6, = max{6(uy),0(0)}, one obtains

ICGo) F (u(®), x(0))]]

6
< p—ﬁ(n||r(pk>x(t>||+ Valu@)l), te

k
On the other hand, considering system (1), we get

(11)

[ts tra1)-
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1 1
(o) x(r) = p—kAl"(pk)X(t) + p—kBM(t) + (o) F (u(r), x(1))

when t € [#,t;+1). Then, the norm of I'(ox)x() on [tx,tx+1)
satisfies

d
— M) < M
<A1l +nE I x(@)l| + (I1BI| + 6 V) lu().

Using the Gronwall’s inequality, we get

(o) ()| < WA P o) x|

t
+ eI (1) 1 6 V) [ Ju(s)lds
Tk

< =t IAl+16) llex + zxll

d
+ ATk (1Bl + 6 in) K 2
k
< (Al+n8) Tk llexll

+ eI AOTk((BI|+ 0 V) Tell K1 + 1) [l
(12)
for any t € [#x,fx+1), where the relation Ty = di /7y is utilized.
Back to (11), we achieve the estimation

I (o) F (ut), x(0))|
n@k
< — eI (]| + 0 ) TRlIK T + 1) el
k
O 1 noy
+ = VKl + — M0k ey |
P Tk Py

during 7 € [#,t +dy), and
ITCox) F (u(2), x())|

n@k
< — IO ((11BI|+ 6 V) Tll KL+ 1)l
P
6
+ ”_2k ATk g, 1l
k

during 7 € [ty + dk, tr+1).
Then, since [|z¢ll < 1Zcll and [lz¢ll + llexll < V211 Zll, we get

M7l < [ M I F (w(s). x(s)lds

6
< 28 A0 (1B + 6 Vi) TellKI -+ 1) e

Py

Ok di AT, Okl QllAI+naT,
+ — — Ve [l7¢]| + =5 Tre A0 T gy |
-
Py Tk P

0,
< 2R T @A (1B + 0, ) TlIKI+ V2)I1Z)
2

Py

O d
+ = — Ve K|Z4].
Py Tk

(13)

Because
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+

. T T
[Feo)] < | =2 LCT (00 Fi (1+ —"LC)r(pkm
Pk Pk

< CILCI+m) T (e Fl|

one achieves the estimation

_ T
|Exon)]| < p—gaknzkn (14)

k

where o is the constant depended on 6; and T%. It can
be chosen as o = O ((QIILC|| + n) VreITk||K|| + (2||LC]| +
m)ne ATk (B + 6 V)Tl + V2)).

Now, we can analyze the stability of system (9) by employ-
ing the Lyapunov method. Let the Lyapunov function candi-
date be

Vi=ZlPZ, k=0,1,...
Since

i\1T'7-(((1)P7-((0/)v —vIpy
l024

~ d(SVIH(s)PH(s)v)
B ds

(@-1)
s=£€(a,l)

(@-1) S%va(H(s)(PD + DP)H(s)v

-y(a-1) 11 VIH (s)PH(s)v
sy
<-(1-a) %vTﬂ(s)(PD +DP —yP)YH(s)v
S
<0

holds for any non-zero vector ve Q= {v||v||=1} and con-

stant o € (0, 1], we get
Y
i) Gs) 7
Phk+1 Plh+1

7{( Pk
Thus, using the estimation (10) and (14), it is calculated as

Pk+1

Pk
Viel = Z PZs1 + (p

Y
) FT (o1) PF (p1)

k+1

Y 17T Y
Ph+1 2 ok \Pi+1

7 2
) IZIl;

Ty ( pr
+2w|Pllor— (
Py \Pk+1

T? Y
Pk
+||P||ai—§( ) 1ZIi}
pk pk+l
Y Y
1T
S(/Ok ) Vk___k(Pk ) v
Pk+1 2 pic \ Pr+1

T LA |
+2w||P||o-k—k( Pk ) Vi

P2 \Pi+1)  Amin(P)
T2 Yo
Pk
+IPlloy — ( ) Vi
¢ \Prs1) Amin(P)
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where @ is employed to denote the upper bounded of
[ A(a,7)|| in the area (0,1]x(0,1], and Ay (P) is the minimal
eigenvalue of matrix P.

Through choosing
Pk k Ty
= PE(1 - 2X Lo Pllo =
pir1 max{z( 2Pl
T2 1 1 Tk
+[IPll —’;m)y Pk} (15)

with initial value pg > 1, we obtain
1 Y
Vir1 < (E) Vi.

Therefore, V is decreasing, and Z; is bounded and con-
verging to 0. Since luxl = |%K1k| < ﬁ”KHHZk”, we conclude
that the input u; is bounded, which can ensure 6; and o to be
bounded. That is, a constant - can be found such that o <o .

If

1
. >4w||P||5 +2||P|[e2T,
p Anin(P) X nin(P)
we get
Ty T, 1 ,TE 1
— > 2o||Plloy— +|P |I —
2Pk 2 /1mm(P) 4 mm(P)

Then, (15) is turned into Pk+1 = max{a, Pk}, Because
Tk < Tmax, We ensure p is a bounded parameter. Since Z; is
converging to 0, we conclude that the states X, x; are asymp-
totic converging to 0. From (12), we also get the upper bound
of ||x(#)|| on [tx,fx+1) is proportional to ||x||. Thus, we get
lim;—, 1o x(#) = 0, and conclude that system (1)—(4) is globally
asymptotically stable at equilibrium x = 0. [ |

Remark 5: The contributions of Theorem 1 are twofold:
1) A new design approach is developed to dominate the inter-
mittent hold for sampled-data control problem. This approach
is inspired by the design principle of continuous-discrete
observer [14]—[16]. Different from their results, our result
considers the parameter-depended coefficient matrix A(w,7),
and the second variable 1 is chosen in an open interval (0, 1].
Thus, additional analysis is processed to ensure the bound of
A(a,7) on the open interval (0,1]x(0,1]. 2) It is noted that a
main design principle in this paper is that Lm = KT'(p)Xx
which is utilized to achieve the estimation (12) and (13). This
means that even for a sufficiently small 74, the value of uy
maybe large, but the integrating term f,ik“ Uk is bounded.

Remark 6: Theorem 1 presents a robust result that the con-
trol period [tx,fx +di) is pre-given. We can extend this by
design the holding length di. For example, the control length
is determined through a self/event-triggered mechanism.

Remark 7: The semi-global asymptotical stability can be
achieved through designing the dynamic parameter p; as a
constant parameter p. From the design (15), the dynamic
parameter p; is depended on uy. Since Uk < ﬁHK”HZI{H <
WHKH Vi < m”lfﬂ VVo, we can find &¢ such
that oy <0 when x(0) € Q with Q cR" being any closed
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set. Then, constant p can be chosen with the set Q, and we can
design a constant parameter p to achieve the semi-global
asymptotical stability.

Remark 8: The only design parameter in our control (4) is
Pk This parameter p; increases with the sampling size Ty, the
activating rate 7y, the system order n, and the nonlinear
growth rate 6(u). From the definition of Vj, a high parameter
px may result in an overshoot or a slow converging rate. But,
to get a sufficient condition, we employ many inequalities to
estimate the upper bound of the system states. In this case, a
smaller parameter p; may also ensure the system stability.

IV. SIMULATION
We consider two examples to illustrate the effectiveness of
our method.
Example 1: Consider a three-stage rectors chemical system.
Following the description in [18], it can be described as

—-R
Ly + (ki +kokz)xs

X =
1
. 1-R
Xy = X
2 Vs 3
F
X3=—u 16
3T (16)

where x;, xo and x3 are respectively the compositions of the
produce streams, R; and R, denote the recycle flow rates, Vi,
V, and V3 denote the rector volumes, ki, k and k3 denote the
reaction constants, and u, F are the fresh feed rates.

The sampled-data output is measured as

ye=x1(t), k=0,1,2,...

where # = kT with T being the sampling size.
. . 1-R,
Consider the state transformation z; =x;, 22= 7y *2,
A=RpD(A=Ry) (=R)(A-RY)F

B="vv  BB,V=E "y

u. Then, we obtain

Z1=20+kKZ3, 22=23, 3=V
where k = (ki +k2k3)%.

For the three-stage rectors chemical system (16), we choose
the parameters as below: The recycle flow rates of the rector
chemical system are chosen as R; = 0.4 m/s and R, = 0.3 m/s;
the rector volumes are chosen as Vi =04L, V, =0.5L and
V3 =0.3 L; the reaction constants are k; =0.2, k» =0.3, and
k3 = 0.1; the fresh feed rate is F = 0.1 m/s.

It can be calculated that x=0.110. It is verified that
Assumption 1 is satisfied with 8 =0.110. In this simulation,
we consider the periodic sampling, and the sampling size T is
T = 1. Then, the control is designed as

21k 8%k 6Z34

—— 5 - telkk+1)
™0

(17
0, telk+t,k+1)

N
where 2 = (214, 224,234)  satisfies

Zk+1 = M1 2k + Mau— M3yy.
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Here, My = (I + M3C)e*, My = (I1+ M3C) [ e*'~9ds, M3 =
( 6 _12 _38 )T A 8 (1) (1)

T3 A= , C=(1,0,0).

e 00 of T

To show the effectiveness of our compensating design, we
consider the case of the semi-global stabilization. We let
p =15, and respectively consider the activating rates 7= 0.2,
7=04, 7=0.6, 7=0.8, 7=1. The state trajectory is shown
in Fig. 3 with the initial condition xo = (0.02,-0.02,0.05)7,
20 = (0,0,0)”. We observe that all system states converge to
the equilibrium z1,z2,23 = 0. Meanwhile, the trajectories are
almost same. Thus, through our compensating design for the
intermittent, the system performance is guaranteed, and the
system stability can be achieved, even for a small activating
rate 7. This makes our result significant in the study of nonlin-
ear systems.

6 0.4

0.2

NN AN

NN AN

g
Scxa kv
g ot
S hiv

2
0
0
-0.2
0 50 100 150 200 0 50 100 150 200
Time 7 (s) Time ¢ (s)
(a) State x, (b) State x,
0.06
—1=02 —1=02
0.04 —1=04 —1=04
7=0.6 0 7=0.6
0.02 — =028 —1=038
0 —1=1.0 —1=1.0
-0.02
—0.02
—0.04 —-0.04
0 50 100 150 200 0 50 100 150 200
Time ¢ (s) Time ¢ (s)
(c) State x, (d) Input v
Fig. 3.  Trajectory of system (16) under control (17) with different activat-

ing rate 7.
Example 2: Consider the nonlinear system
X1 = x2+2ux3
Xy = x3+ u?

(18)
with the output measurement y; = x1(%), k=0,1,2,... The
instants {f;}r>0 are given as fo =0, and f;3; =; +T;,i =0, 1,...
with T; being randomly chosen in [1073,1072]. We also ran-
domly choose the activating rate 74 in [0.1,1]. The control
u(t) is given as

Xx3=u

521k 8k 63k
™ Tl TPk

, tE€[titr+dy)

u= (19)
0, t € [t +di, ter1)

where dj = 74Tk, and % = (21,k,22,k,23,k)T satisfies

Zke1 = M1 2+ Mau— M3yy.

Here,
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T
My = I+ M0, My = (I+ M;C) fo K AT g

6 12 8) 010
M3=Tk[——,——2,——3), A=lo 0 1
Pk Pic Py 00 0

and C = (1,0,0). Following Theorem 1, the dynamic parame-
ter py can be updated as

T, T,
Pk+1 = Max @(1 - _k +24(|uk| +e|uk|)_k
2 20 02

T2, 10
+100(u| +€"h? =) 1077, pk}. (20)
Pk

The simulation results are shown in Fig. 4. One can see that
all the system states x;, xp, x3 are converging to 0. Thus, the
system is asymptotically stable at the point x = 0. Meanwhile,
the control input is piece-wise constant, which is the intermit-
tent-hold mechanism as we described. Therefore, the simula-
tion verified the effectiveness of our designed controller.

0.2

0.1 -

0 T 0
\>(/ 0.01

0
—0.1 05 ~o.01 ][I
02 030 1005 1010
’ 5 0 15 20 0 5 10 15 20
Time ¢ (s) Time ¢ (s)
(a) State x, (b) Input u
Fig. 4. Trajectory of system (18) under control (19) and (20).

V. CONCLUSION

This paper considered the sampled-data control with inter-
mittent hold for feedforward nonlinear systems. We assumed
the control signal to be holded during a given activating
period [t fx +dy), and to be zero during the other period
[# +dk, tr+1). It is proved that the stabilizing controller can be
designed for the feedforward nonlinear system (1) under
Assumption 1 if ,kj—k_tk € [Tmin, 1] with Tpin > 0. The intro-
duced method successfully built a relationship between the
impulsive controller and the sampled-data controller. We
think the possible future works may consider the more com-
plex systems. For example, how to design the intermittent-
hold controller for the uncontrollable system x| = xp, X =
xg, X3 =u?
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