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ABSTRACT
This paper proposes a method for designing an output regulation controller for a class of feedforward nonlinear systems, where
the nonlinear terms exhibit an unknown input-dependent rate. The completely unknown nature of this rate introduces significant
challenges to control design, rendering existing adaptive and time-varying methods ineffective. To address these challenges, we
first introduce a bound on the input and transform the nonlinear condition into an equivalent case with an unknown constant
rate. Subsequently, we develop both time-varying and adaptive methods to design the controller. Through rigorous mathematical
analysis, we prove that the regulation objective can be achieved under the proposed control framework. Illustrative examples are
provided to demonstrate the effectiveness of the designed control strategy.

1 | Introduction

Research on feedforward nonlinear systems has been a cen-
tral focus in control theory, with numerous investigations over
the years. These systems are commonly encountered in prac-
tical scenarios, such as the cart-pendulum system [1] and the
induction heater circuit system [2]. They often possess an
upper triangular structure, making them generally non-feedback
linearizable, which poses significant challenges in designing
controllers.

Designing an output feedback stabilizing controller for nonlin-
ear systems is a particularly difficult problem. It has been shown
that the output feedback problems can only be solved for nonlin-
ear systems when the nonlinear terms satisfy specific conditions
[3, 4]. The Lipschitz condition is commonly considered in nonlin-
ear systems, which ensures the existence and uniqueness of the
solution. By considering the equilibrium point as zero, the Lips-
chitz condition can be interpreted as a linear growth condition.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

© 2025 John Wiley & Sons Ltd.

Early works focused on the output feedback stabilization for
feedforward nonlinear systems with the linear growth condition
[5, 6], while other factors, such as delays [7, 8], measurement sen-
sitivity [9], stochastic dynamics [7], and sampling output [9–11],
were also considered.

For more complex cases, the nonlinear term was allowed to have
an input-dependent incremental rate [12], where the Lipschitz
coefficient becomes a function of the input. The control param-
eter can be designed to account for this input-dependent func-
tion. Later works [13, 14] extended this idea by allowing the
input-dependent rate to include an unknown coefficient, with the
control gain regulated through an adaptive law or a time-varying
method to dominate the unknown coefficient. However, none of
these approaches addressed the case where the input-dependent
rate itself is entirely unknown.

When the input-dependent rate is unknown, designing a con-
troller becomes significantly more challenging. For a constant
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rate, adaptive laws can estimate the constant, or time-varying
parameters can be designed to regulate the gain into the stable
margin [9, 15]. However, when the rate is both input-dependent
and unknown, it becomes difficult to incorporate it into the
design, making it hard to determine the appropriate control gain.
Unlike the case of an input-dependent rate with an unknown
coefficient [13, 14], where partial information helps in evaluating
the control gain feasibility, this scenario offers no such informa-
tion. This situation also differs from our previous work on state
feedback control for unknown input-dependent rates [16], which
used a value function to update the control gain. In the output
feedback case, however, designing such a value function is not
feasible.

This paper presents a novel method to solve the output feedback
regulation problem for the feedforward nonlinear system whose
nonlinear terms have an unknown input-dependent rate. Unlike
existing methods, we first establish an upper bound for the input,
transforming the input-dependent rate into a condition with an
unknown constant. Then, a time-varying parameter is employed
to regulate the system within a stable margin and ensure that the
input remains bounded. Finally, we present a method to estimate
the control gain through the adaptive law. Our contributions can
be summarized as follows:

• Our approach fundamentally differs from existing dynamic
gain methods [12–14]. While previous methods designed a
dynamic parameter larger than the input-dependent incre-
mental rate, we regulate the input within a predefined
bounded set, allowing the control parameter to be indepen-
dent of the input-dependent incremental rate.

• We relax the conditions on nonlinear terms compared to
existing works [13, 17]. Specifically, we address incremen-
tal rates that depend on both unknown input-dependent
dynamics and unknown time-varying logarithmic dynamics.
Previous approaches typically assumed precise knowledge of
input-dependent dynamics, which was critical for designing
control gains.

The remainder of this paper is organized as follows: We describe
the problem in Section 2. Then, the novel method is introduced in
Section 3 to respectively design a dynamic time-varying controller
and an adaptive controller. Two examples are considered to illus-
trate the effectiveness of the proposed methods in Section 4. Some
ending remarks are summarized in Section 5, while a reference
list ends this paper.

Notation: We employ || ⋅ || to denote the Euclidean norm for vec-
tors or the induced Euclidean norm for matrices. For matrix
𝑃 , 𝑃⊤ represents its transpose, and 𝜆max(𝑃 ), 𝜆min(𝑃 ) denote the
largest eigenvalue and the smallest eigenvalue of the matrix 𝑃 ,
respectively. We use 𝐼 to denote an 𝑛 × 𝑛 identity matrix.

2 | Problem Formulation

Consider the feedforward nonlinear system

𝑥̇
𝑖
(𝑡) = 𝑥

𝑖+1(𝑡) + 𝑓
𝑖
(𝑡, 𝑥(𝑡), 𝑢(𝑡)), 𝑖 = 1, 2, . . . , 𝑛 − 1

𝑥̇
𝑛
(𝑡) = 𝑢(𝑡)

𝑦(𝑡) = 𝑥1(𝑡) (1)

where 𝑥 =
(
𝑥1, 𝑥2, . . . , 𝑥𝑛

)⊤ ∈ ℝ𝑛 is the system state, 𝑢 ∈ ℝ is the
system input, and 𝑦 ∈ ℝ is the system output. Without loss of gen-
erality, we assume that the initial instant is 𝑡0, and the initial state
is 𝑥(𝑡0) ∈ ℝ𝑛. The functions 𝑓1 to 𝑓

𝑛−1 are continuous and satisfy
the following assumption.

Assumption 1. For any 𝑥 =
(
𝑥1, 𝑥2, . . . , 𝑥𝑛

)⊤ ∈ ℝ𝑛, 𝑢 ∈ ℝ, it
holds

|
|𝑓𝑖(𝑡, 𝑥, 𝑢)|| ≤ ln(𝑐1𝑡 + 𝑐2)𝜙(𝑢)

(
|
|𝑥𝑖+2

|
| + · · · + |

|𝑥𝑛
|
| + |𝑢|

)

𝑖 = 1, 2, . . . , 𝑛 − 1 (2)

where 𝑐1 ≥ 0, 𝑐2 ≥ 1 − 𝑐1𝑡0 are unknown constants, and𝜙(𝑢) is an
unknown continuous function with respect to 𝑢.

Remark 1. System (1) exhibits an upper triangular structure,
where the nonlinearity depends not only on the unmeasured
states but also on the control input. Assumption 1 plays a cru-
cial role in addressing the output feedback control problem for
feedforward nonlinear systems. The growth rate ln(𝑐1𝑡 + 𝑐2)𝜙(𝑢)
is nonlinear and entirely unknown. A summary of the conditions
considered in the existing literature is presented in Table 1. From
this comparison, it is clear that Assumption 1 offers a much more
relaxed condition than those found in previous studies.

Our objective is to design an output feedback controller

𝑢(𝑡) = ℎ(𝑡, 𝑧(𝑡)), 𝑧̇(𝑡) = 𝑔(𝑡, 𝑦(𝑡), 𝑧(𝑡)) (3)

which can globally regulate the state of system (1) to the equilib-
rium point 𝑥 = 0, 𝑧 = 0. That is, for any initial state 𝑥(𝑡0) ∈ ℝ𝑛,
𝑧(𝑡0) ∈ ℝ𝑛, the state of the closed-loop system (1), (3) satisfy

lim
𝑡→+∞

𝑥(𝑡) = 0, lim
𝑡→+∞

𝑧(𝑡) = 0

Significant progress has been made in addressing global regula-
tion for feedforward nonlinear systems. In the context of low-gain
feedback control design, the control gain can be characterized
by a parameter, which should be sufficiently large relative to
the incremental rate of the nonlinearity. This approach has been
refined in various forms, including the dynamic form [12], adap-
tive form [13, 14], and time-varying form [15, 17]. In this paper,
we respectively adopt the time-varying method and the adap-
tive method to design the control gain, leveraging the following
lemma, which can be readily derived using established analy-
ses [12, 21].

Lemma 1. Let

𝐴 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0
0 0 1 · · · 0
⋮ ⋮ ⋮ ⋮

0 0 0 · · · 1
0 0 0 · · · 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝐵 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
⋮

0
1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)

𝐶 =
(
1 0 0 · · · 0

)
and 𝐷 = diag(𝑛, 𝑛 − 1, . . . , 1). Then, there

exists a row vector 𝐾 , a column vector 𝐿, a positive defined matrix
𝑃 = diag{𝑃1, 𝑃2}, and a positive constant ℎ such that


⊤
𝑃 + 𝑃 ≤ −𝐼, 𝑃 +𝑃 ≥ ℎ𝐼 (5)
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TABLE 1 | Existing works on the growth rate for feedforward nonlinear systems via output feedback control. (𝜃 represents an unknown constant
and 𝑐 is a known constant.)

Constant Function Time-varying

Known 𝑐 [5, 18–20] 𝜙(𝑢) [12, 21] ⧵
Parameter unknown ⧵ 𝜃𝜙(𝑢) [13] 𝜃(1 + 𝑡

𝑐) [17], ln(𝜃1𝑡 + 𝜃2) [9]
Entirely unknown 𝜃 [15, 22] This work ⧵

where

 =

(
𝐴 − 𝐿𝐶 0
−𝐿𝐶 𝐴 − 𝐵𝐾

)

,  =

(
𝐷 0
0 𝐷

)

(6)

3 | Main Results

3.1 | Design of the Time-Varying Control

Before we design, we define 𝑔
𝛼
(𝑠) is a function satisfying the

following conditions:

1. 𝑔
𝛼
(𝑠) is continuous with respect to the variable 𝑠 ∈ ℝ, and

bounded by 𝛼, that is, |𝑔
𝛼
(𝑠)| ≤ 𝛼

2. 𝛽(𝑠) ∶= |
|
|

𝑔
𝛼
(𝑠)−𝑠
𝑠

|
|
|

is continuous with respect to the variable 𝑠 ∈
ℝ, and lim

𝑠→0 𝛽(𝑠) = 0.

Remark 2. Such a continuous function 𝑔
𝛼
(𝑠) can be 𝑔

𝛼
(𝑠) =

𝛼𝑠

𝛼+|𝑠|
, 𝛼 > 0 or 𝑔

𝛼
(𝑠) = 𝛼 ⋅ tanh

(
𝑠

𝛼

)

, 𝛼 > 0. For 𝑔
𝛼
(𝑠) = 𝛼𝑠

𝛼+|𝑠|
,

we get

𝛽(𝑠) = |𝑠|

𝛼 + |𝑠|
, lim

𝑠→+∞
𝛽(𝑠) = 0

For 𝑔
𝛼
(𝑠) = 𝛼 ⋅ tanh

(
𝑠

𝛼

)

, we get

𝛽(𝑠) =
|
|
|
|

𝑠
2

3𝛼2 −
2𝑠4

15𝛼4 +
17𝑠6

315𝛼6 − . . .
|
|
|
|
, |𝑠| <

𝛼𝜋

2

and it can be deduced into lim
𝑠→+∞ 𝛽(𝑠) = 0. Thus, for both func-

tions, our needed conditions are meet.

Employing the design of 𝐾 =
(
𝑘1, 𝑘2, . . . , 𝑘𝑛

)
, 𝐿 =

(
𝑙1, 𝑙2, . . . , 𝑙𝑛

)⊤, matrix 𝑃 , and constant ℎ from Lemma 1,
we design the controller (3) as

𝑢(𝑡) = 𝑔
𝛼
(𝑣(𝑡)), 𝑡 ≥ 𝑡0 (7)

The dynamic 𝑣(𝑡) is given as

𝑣(𝑡) = −
𝑘1

𝑟𝑛(𝑡)
𝑧1(𝑡) −

𝑘2

𝑟𝑛−1(𝑡)
𝑧2(𝑡) − · · · −

𝑘
𝑛

𝑟(𝑡)
𝑧
𝑛
(𝑡) (8)

where 𝑟(𝑡) ≥ 1 is a time-varying dynamic designed as

𝑟̇(𝑡) = 2
ℎ
𝛽(𝑣(𝑡))||𝐾||||𝑃 || + 1

ℎ

1
𝑟(𝑡)

√
𝑛𝛽

2(𝑣(𝑡))||𝐾||||𝑃 || + 𝑞

𝑟(𝑡0) ≥ 1 (9)

with 𝑞 being a positive constant satisfying 𝑞
−1

> 8𝑛𝜆max(𝑃 ). The
variable 𝑧 =

(
𝑧1, 𝑧2, . . . , 𝑧𝑛

)⊤ is the state of the dynamic

𝑧̇
𝑖
(𝑡) = 𝑧

𝑖+1(𝑡) −
𝑙
𝑖

𝑟𝑖(𝑡)
(𝑧1(𝑡) − 𝑦(𝑡)), 𝑖 = 1, 2, . . . , 𝑛 − 1

𝑧̇
𝑛
(𝑡) = 𝑣(𝑡) −

𝑙
𝑛

𝑟𝑛(𝑡)
(𝑧1(𝑡) − 𝑦(𝑡)) (10)

It is worth noting that the design of 𝑢(𝑡) in (7) differs significantly
from the existing designs. This approach specifically ensures that
𝑢(𝑡) remains bounded, which can further simplify the condition
(2). From the properties of 𝑔

𝛼
(⋅), it holds |𝑢(𝑡)| ≤ 𝛼 for any 𝑣(𝑡) ∈

ℝ. Noted that 𝜙(𝑢) in (2) is continuous with respect to 𝑢, and we
can simplify Assumption 1 as

|
|𝑓𝑖(𝑡, 𝑥, 𝑢)|| ≤ 𝜃 ln(𝑐1𝑡 + 𝑐2)

(
|
|𝑥𝑖+2

|
| + · · · + |

|𝑥𝑛+1
|
|

)
(11)

where 𝜃 is an unknown constant. This unknown constant 𝜃 is
dependent on the unknown dynamic 𝜙(𝑢) and the parameter 𝛼.

This approach causes the parameter 𝑟 to differ from that in exist-
ing methods. It regulates the control gain, which governs not only
the nonlinearity but also the effects of the bounded input. Thus,
it consists of two parts. The first part is

𝑟̇(𝑡) ≥ 2
ℎ
𝛽(𝑣(𝑡))||𝐾||||𝑃 || + 1

ℎ

1
𝑟(𝑡)

√
𝑛𝛽

2(𝑣(𝑡))||𝐾||||𝑃 ||

which we employed to regulate the error 𝑣(𝑡) − 𝑢(𝑡). The other is

𝑟̇(𝑡) ≥ 𝑞 > 0

which is utilized to dominate the unknown constant. The main
result is summarized as below:

Theorem 1. Under Assumption 1, global regulation of sys-
tem (1) can be achieved through the controller (7–10).

Proof. For the convenience of the readers, we break up the
proof into three parts. We first introduce an auxiliary variable
𝑍(𝑡). Then, we prove that the variable 𝑍(𝑡) is converging to 0.
Finally, we go back to the original state 𝑧(𝑡), 𝑥(𝑡), and we proved
that 𝑧(𝑡)→ 0, 𝑥(𝑡) → 0 as 𝑡 → 0.

Part I: Constructing auxiliary variable 𝑍(𝑡) =
(
𝜉
⊤(𝑡), 𝜂⊤(𝑡)

)⊤. We
first consider 𝜉(𝑡) =

(
𝜉1(𝑡), . . . , 𝜉𝑛(𝑡)

)⊤, where

𝜉
𝑖
(𝑡) =

𝑧
𝑖
(𝑡) − 𝑥

𝑖
(𝑡)

𝑟𝑛+1−𝑖(𝑡)
, 𝑖 = 1, 2, . . . , 𝑛

From (1), (10), we obtain

𝜉̇(𝑡) = 1
𝑟(𝑡)

(𝐴 − 𝐿𝐶)𝜉(𝑡) − 𝑟̇(𝑡)
𝑟(𝑡)

𝐷𝜉(𝑡) + 1
𝑟(𝑡)

𝐺1(𝑡) − 𝐺2(𝑡) (12)
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where matrices 𝐴,𝐶,𝐷 are the same with the denotation in
Lemma 1, 𝐺1(𝑡) = (0, 0, . . . , 0, 𝑣(𝑡) − 𝑢(𝑡))⊤, and

𝐺2(𝑡) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
𝑟𝑛(𝑡)

𝑓1(𝑡, 𝑥(𝑡), 𝑢(𝑡))
1

𝑟𝑛−1(𝑡)
𝑓2(𝑡, 𝑥(𝑡), 𝑢(𝑡))

⋮
1

𝑟2(𝑡)
𝑓
𝑛−1(𝑡, 𝑥(𝑡), 𝑢(𝑡))

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Another variable 𝜂(𝑡) =
(
𝜂1(𝑡), . . . , 𝜂𝑛(𝑡)

)⊤ is given as

𝜂
𝑖
(𝑡) =

𝑧
𝑖
(𝑡)

𝑟𝑛+1−𝑖(𝑡)
, 𝑖 = 1, 2, . . . , 𝑛

Then, the dynamic 𝑣(𝑡) in (8) is expressed as

𝑣(𝑡) = −𝐾𝜂(𝑡)

and from (10), we get

𝜂̇(𝑡) = 1
𝑟(𝑡)

(𝐴 − 𝐵𝐾)𝜂(𝑡) − 1
𝑟(𝑡)

𝐿𝐶𝜉(𝑡) − 𝑟̇(𝑡)
𝑟(𝑡)

𝐷𝜂(𝑡) (13)

where 𝐵 is denoted as (4).

Putting (12) and (13) together, we get the dynamic of 𝑍(𝑡) as

𝑧̇(𝑡) = 1
𝑟(𝑡)
𝑍(𝑡) − 𝑟̇(𝑡)

𝑟(𝑡)
𝑍(𝑡) + 1

𝑟(𝑡)
1(𝑡) + 2(𝑡) (14)

where ,  are denoted as (6), 1(𝑡) = (𝐺⊤

1 (𝑡), 0
⊤)⊤, and 2(𝑡) =

(−𝐺⊤

2 (𝑡), 0
⊤)⊤.

Part II: Convergence of the variable 𝑍(𝑡). Consider the function

𝑉 (𝑡) = 𝑍
⊤(𝑡)𝑃𝑍(𝑡)

where 𝑃 is given in Lemma 1. Its derivative is computed as

𝑉̇ (𝑡) ≤ − 1
𝑟(𝑡)

||𝑍(𝑡)||2 − ℎ
𝑟̇(𝑡)
𝑟(𝑡)

||𝑍(𝑡)||2

+ 2
𝑟(𝑡)

𝑍
⊤(𝑡)𝑃1(𝑡) + 2𝑍⊤(𝑡)𝑃2(𝑡) (15)

where (5) is utilized.

Since

|𝑢(𝑡) − 𝑣(𝑡)| = 𝛽(𝑣(𝑡))|𝑣(𝑡)| ≤ 𝛽(𝑣(𝑡))||𝐾||||𝜂(𝑡)||

we get

2
𝑟(𝑡)

𝑍
⊤(𝑡)𝑃1(𝑡) ≤

2
𝑟(𝑡)

𝛽(𝑣(𝑡))||𝐾||||𝑃 ||||𝑍(𝑡)||2 (16)

On the other hand, because the nonlinear terms𝑓
𝑖
(𝑡, 𝑥(𝑡), 𝑢(𝑡)) sat-

isfy (11) and 𝑟(𝑡) ≥ 1, we obtain

1
𝑟𝑛+1−𝑖(𝑡)

|𝑓
𝑖
(𝑡, 𝑥(𝑡), 𝑢(𝑡))| ≤

𝜃 ln(𝑐1𝑡 + 𝑐2)
𝑟2(𝑡)

(√
2𝑛||𝑍(𝑡)|| + |𝑢(𝑡)|

)

Because

|𝑢(𝑡)| ≤ |𝑢(𝑡) − 𝑣(𝑡)| + |𝑣(𝑡)| ≤ (𝛽(𝑣(𝑡)) + 1)||𝐾||||𝜂(𝑡)||

we get

1
𝑟𝑛+1−𝑖(𝑡)

|𝑓
𝑖
(𝑡, 𝑥(𝑡), 𝑢(𝑡))|

≤
𝜃 ln(𝑐1𝑡 + 𝑐2)

𝑟2(𝑡)
(𝛽(𝑣(𝑡)) +

√
2𝑛 + 1)||𝐾||||𝑍(𝑡)||

Thus, we get

||2(𝑡)|| ≤
𝜃

√
𝑛 ln(𝑐1𝑡 + 𝑐2)
𝑟2(𝑡)

(𝛽(𝑣(𝑡)) +
√

2𝑛 + 1)||𝐾||||𝑍(𝑡)||

and

2𝑍⊤(𝑡)𝑃2(𝑡) ≤
2𝜃
√
𝑛 ln(𝑐1𝑡 + 𝑐2)
𝑟2(𝑡)

× (𝛽(𝑣(𝑡)) +
√

2𝑛 + 1)||𝐾||||𝑃 ||||𝑍(𝑡)||2

≤
2𝜃 ln(𝑐1𝑡 + 𝑐2)(

√
2𝑛 + 1) + 𝜃

2ln2(𝑐1𝑡 + 𝑐2)
𝑟2(𝑡)

×
√
𝑛||𝐾||||𝑃 ||||𝑍(𝑡)||2 + 1

𝑟2(𝑡)
𝛽

2(𝑣(𝑡))

×
√
𝑛||𝐾||||𝑃 ||||𝑍(𝑡)||2 (17)

Based on (9), (16), and (17), we update (15) as

𝑉̇ (𝑡) ≤ − 1
𝑟(𝑡)

||𝑍(𝑡)||2

+
2𝜃 ln(𝑐1𝑡 + 𝑐2)(

√
2𝑛 + 1) + 𝜃

2ln2(𝑐1𝑡 + 𝑐2)
𝑟2(𝑡)

×
√
𝑛||𝐾||||𝑃 ||||𝑍(𝑡)||2

From (9), we ensure that

lim
𝑡→+∞

2𝜃 ln(𝑐1𝑡 + 𝑐2)(
√

2𝑛 + 1) + 𝜃
2ln2(𝑐1𝑡 + 𝑐2)

𝑟(𝑡)

×
√
𝑛||𝐾||||𝑃 || = 0

holds for any constants 𝜃 ≥ 0, 𝑐1 ≥ 0, and 𝑐2 ≥ 1 − 𝑐1𝑡0. Then,
there exists an instant 𝑡1 ≥ 𝑡0 such that

2𝜃 ln(𝑐1𝑡 + 𝑐2)(
√

2𝑛 + 1) + 𝜃
2ln2(𝑐1𝑡 + 𝑐2)

𝑟(𝑡)

×
√
𝑛||𝐾||||𝑃 || ≤

1
2
, 𝑡 ≥ 𝑡1

In this case, we get

𝑉̇ (𝑡) ≤ − 1
2𝑟(𝑡)

||𝑍(𝑡)||2 ≤ − 1
2𝜆max(𝑃 )𝑟(𝑡)

𝑉 (𝑡), 𝑡 ≥ 𝑡1 (18)

Because 𝑟(𝑡) → +∞ as 𝑡 → +∞, we cannot directly get the con-
vergence of 𝑍(𝑡) from the above inequality. We further analyze
as fellow. Noticing that 𝑉̇ (𝑡) ≤ 0, we ensure 𝑣(𝑡) = −𝐾𝜂(𝑡) to be
bounded. Since 𝛽(𝑠) is continuous with respect to 𝑠, we can ensure
𝛽(𝑣(𝑡)) to be bounded. Back to (9), there exists a constant 𝑟 to meet

3526 International Journal of Robust and Nonlinear Control, 2025
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𝑟̇(𝑡) ≤ 𝑟. Then, it holds 𝑟(𝑡) ≤ 𝑟 ⋅ (𝑡 − 𝑡1) + 𝑟(𝑡1), 𝑡 ≥ 𝑡1. From (19),
we arrive at

𝑉 (𝑡) ≤
(

𝑟(𝑡1)
𝑟 ⋅ (𝑡 − 𝑡1) + 𝑟(𝑡1)

) 1
2𝜆max (𝑃 )𝑟

𝑉 (𝑡1)

which means
lim
𝑡→+∞

𝑉 (𝑡) = 0

Because 𝑉 (𝑡) ≥ 𝜆min(𝑃 )||𝑍(𝑡)||2, we achieve

lim
𝑡→+∞

𝑍(𝑡) = 0 (19)

Noticed that since 𝑟(𝑡) is time-varying, we cannot directly get the
convergence of the system states from (19). The following analy-
sis is needed.

Part III: Convergence of the original states 𝑧(𝑡), 𝑥(𝑡). Since

|𝑧
𝑖
(𝑡)| ≤ 𝑟

𝑛(𝑡)|𝜂
𝑖
(𝑡)|, |𝑥

𝑖
| ≤ 𝑟

𝑛(𝑡)
(
|𝜂

𝑖
(𝑡)| + |𝜉

𝑖
(𝑡)|

)

hold for any 𝑖 = 1, 2, . . . , 𝑛, we can get the convergence of 𝑧(𝑡),
𝑥(𝑡) through considering 𝑉 (𝑡) = 𝑟

2𝑛(𝑡)𝑉 (𝑡). From (18), we get

̇̃
𝑉 (𝑡) ≤ − 1

2𝜆max(𝑃 )
1
𝑟(𝑡)

𝑉 (𝑡) + 2𝑛 𝑟̇(𝑡)
𝑟(𝑡)

𝑉 (𝑡), 𝑡 ≥ 𝑡1

We obtain that when 𝑡 → +∞, it holds 𝑍(𝑡) → 0, 𝑣(𝑡) → 0,
𝛽(𝑣(𝑡)) → 0. Then, there exists an instant 𝑡2 ≥ 𝑡1 such that

𝑟̇(𝑡) ≤ 1
2𝑛

1
4𝜆max(𝑃 )

+ 𝑞, 𝑡 ≥ 𝑡2

Thus, we arrive at

̇̃
𝑉 (𝑡) ≤ −

(
1

4𝜆max(𝑃 )
− 2𝑛𝑞

)
1
𝑟(𝑡)

𝑉 (𝑡), 𝑡 ≥ 𝑡2

From the design of 𝑞, we get
(

1
4𝜆max(𝑃 )

− 2𝑛𝑞
)

> 0. Similar to the
above analysis, we can get

lim
𝑡→+∞

𝑉 (𝑡) = 0

which indicates the convergence of the states 𝑧(𝑡), 𝑥(𝑡). This ends
the proof. ◽

Remark 3. The system performance of our controller is heav-
ily affected by the constant 𝛼. When 𝛼 is small, the nonlinear
growth rate may be small, and the bound of control input is
small. We use the constant 𝛼 to transform Assumption 1 into an
unknown time-varying incremental rate 𝜃 ln(𝑐1𝑡 + 𝑐2) as shown
in (11). Although the time-varying parameter is introduced, 𝑟(𝑡)
is regulated to dominate the unknown growth rate. Thus, by care-
fully designing the constant 𝛼, the transient performance of the
system can be improved.

3.2 | Design of the Adaptive Control

In the control design of (7–10), the parameter 𝛼 tends to∞, which
is reasonable since condition (2) includes the time-varying coeffi-
cient ln(𝑐1𝑡 + 𝑐2). When the time-varying coefficient is absent, we
generally design a finite control gain. In the following, we intro-
duce an alternative approach to control design.

Theorem 2. Consider system (1) whose nonlinear terms satisfy

|𝑓
𝑖
(𝑡, 𝑥, 𝑢)| ≤ 𝜙(𝑢)

(
|𝑥

𝑖+2| + . . . + |𝑥
𝑛
| + |𝑢|

)
, 𝑖 = 1, 2, . . . , 𝑛 − 1

with𝜙(𝑢) being an unknown continuous function. Let the controller
be (7), (8), (10). Then, by designing the dynamic parameter 𝑟(𝑡) as

𝑟̇(𝑡) = 2
ℎ
𝛽(𝑣(𝑡))||𝐾||||𝑃 || + 1

ℎ

1
𝑟(𝑡)

√
𝑛𝛽

2(𝑣(𝑡))||𝐾||||𝑃 ||

+
𝑛∑

𝑖=1

1
𝑟2𝑛+3−2𝑖 𝑧

2
𝑖
(𝑡) + 1

𝑟2𝑛+1(𝑡)
(
𝑦(𝑡) − 𝑧1(𝑡)

)2

we can achieve

lim
𝑡→+∞

||𝑧(𝑡)|| = 0, lim
𝑡→+∞

||𝑥(𝑡)|| = 0

Proof. By considering the auxiliary variable 𝑍(𝑡), we also get
(14). Since |𝑢(𝑡)| ≤ 𝛼, we can express the condition as

|𝑓
𝑖
(𝑡, 𝑥, 𝑢)| ≤ 𝜃

(
|𝑥

𝑖+2| + · · · + |𝑥
𝑛
| + |𝑢|

)

where 𝜃 is an unknown constant.

Then, by considering the Lyapunov function 𝑉 (𝑡) = 𝑍
⊤(𝑡)𝑃𝑍(𝑡),

we get its derivative as

𝑉̇ (𝑡) ≤ − 1
𝑟(𝑡)

||𝑍(𝑡)||2 + Θ
𝑟2(𝑡)

||𝑍(𝑡)||2

where Θ =
(

2𝜃(
√

2𝑛 + 1) + 𝜃
2
)√

𝑛||𝐾||||𝑃 ||.

The following analysis is divided into two cases:

Case I: there is an instant 𝑡1 such that 𝑟(𝑡1) ≥ max{2Θ, 1}. Since
𝑟(𝑡) is a non-decreasing function, we get 𝑟(𝑡) ≥ 𝑟(𝑡1), 𝑡 ≥ 𝑡1. Then,
it holds

𝑉̇ (𝑡) ≤ − 1
2𝑟(𝑡)

||𝑍(𝑡)||2 ≤ − 1
2𝜆max(𝑃 )𝑟(𝑡)

𝑉 (𝑡), 𝑡 ≥ 𝑡1

Integrating both sides from 𝑡1 to 𝑡, we get

𝑉 (𝑡1) ≥ 𝑉 (𝑡1) − 𝑉 (𝑡) ≥
∫

𝑡

𝑡1

1
2𝜆max(𝑃 )𝑟(𝑠)

𝑉 (𝑠)𝑑𝑠

and

𝑟(𝑡) − 𝑟(𝑡1) ≤
∫

𝑡

𝑡1

2
ℎ
𝛽(𝑣(𝑠))||𝐾||||𝑃 ||𝑑𝑠

+
∫

𝑡

𝑡1

1
ℎ

1
𝑟(𝑠)

√
𝑛𝛽

2(𝑣(𝑠))||𝐾||||𝑃 ||𝑑𝑠

+
∫

𝑡

𝑡1

1
𝜆min(𝑃 )𝑟(𝑠)

𝑉 (𝑠)𝑑𝑠
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≤
∫

𝑡

𝑡1

2
ℎ
𝛽(𝑣(𝑠))||𝐾||||𝑃 ||𝑑𝑠

+
∫

𝑡

𝑡1

1
ℎ

1
𝑟(𝑠)

√
𝑛𝛽

2(𝑣(𝑠))||𝐾||||𝑃 ||𝑑𝑠

+
2𝜆max(𝑃 )
𝜆min(𝑃 )

𝑉 (𝑡1)

where 𝑉 (𝑠) ≤ 𝑉 (𝑡1), 𝑠 ∈ [𝑡1, 𝑡) is employed. Meanwhile, it holds

|𝑣(𝑡)| ≤ ||𝐾||||𝑧(𝑡)|| ≤ ||𝐾||||𝑍(𝑡)|| ≤ ||𝐾||

√
1

𝜆min(𝑃 )
𝑉 (𝑡)

≤ ||𝐾||

√
1

𝜆min(𝑃 )
𝑉 (𝑡1)

Noted that the above inequality is holds for any 𝑡 ∈ [𝑡1,+∞).
Thus, 𝑣(𝑡) is bounded on [𝑡1,+∞). Since 𝛽(𝑣(𝑠)) is continuous, we
can find a constant 𝑟 such that 𝑟(𝑡) ≤ 𝑟(𝑡 − 𝑡1) + 𝑟(𝑡1). The follow-
ing analysis is similar to the proof for Theorem 1, and we omit
it here.

Case II: the upper bound of 𝑟(𝑡) is smaller than max{2Θ, 1}. Since

𝑟𝑟̇ ≥ ||𝜂(𝑡)||2 + 1
𝑟2𝑛(𝑡)

(
𝑦(𝑡) − 𝑧1(𝑡)

)2

we get

∫

𝑡

𝑡0

||𝜂(𝑠)||2𝑑𝑠 +
∫

𝑡

𝑡0

1
𝑟2𝑛(𝑠)

(
𝑦(𝑠) − 𝑧1(𝑠)

)2
𝑑𝑠

< 𝑟
2(𝑡) < max{4Θ2

, 1} (20)

Thus, it holds

lim
𝑡→+∞

||𝜂(𝑡)|| = 0, lim
𝑡→+∞

1
𝑟2𝑛(𝑡)

(𝑦(𝑡) − 𝑧1(𝑡))2 = 0

which means 𝑣(𝑡) = 𝐾𝜂(𝑡) is bounded. That is, there exists a
constant 𝛽 such that 𝛽(𝑣(𝑡)) ≤ 𝛽. In the follow, We prove that
lim

𝑡→+∞ ||𝑥(𝑡)|| = 0.

Consider another auxiliary variable 𝜀(𝑡) =
(
𝜀1(𝑡), . . . , 𝜀𝑛(𝑡)

)⊤

where
𝜀
𝑖
(𝑡) =

𝑧
𝑖
(𝑡) − 𝑥

𝑖
(𝑡)

𝛾𝑛+1−𝑖(𝑡)
, 𝑖 = 1, 2, . . . , 𝑛

with 𝛾(𝑡) = 𝑐𝑟(𝑡). Here, 𝑐 ≥ 1 is a constant that is not utilized in
the control design.

Then, we get

𝜀̇(𝑡) = 1
𝛾(𝑡)

(𝐴 − 𝐿𝐶)𝜀(𝑡) − 1
𝛾(𝑡)

𝐿Γ𝜀1(𝑡)

− 𝛾̇(𝑡)
𝛾(𝑡)

𝐷𝜀(𝑡) + 1
𝛾(𝑡)

𝐺1(𝑡) − 𝐺̃2(𝑡)

where 𝐴,𝐶,𝐷,𝐺1 are the same with (12), Γ =
diag{𝑐𝑛, 𝑐𝑛−1

, . . . , 𝑐} and

𝐺̃2(𝑡) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
𝛾𝑛(𝑡)

𝑓1(𝑡, 𝑥(𝑡), 𝑢(𝑡))
1

𝛾𝑛−1(𝑡)
𝑓2(𝑡, 𝑥(𝑡), 𝑢(𝑡))

⋮
1

𝛾2(𝑡)
𝑓
𝑛−1(𝑡, 𝑥(𝑡), 𝑢(𝑡))

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Consider 𝑉1(𝑡) = 𝜀
⊤(𝑡)𝑃1𝜀(𝑡), and its derivative is computed as

𝑉̇ 1(𝑡) ≤ −
1
𝛾(𝑡)

||𝜀(𝑡)||2 − 2
𝛾(𝑡)

𝜀
⊤(𝑡)𝑃1𝐿Γ𝜀1

+ 2
𝛾(𝑡)

𝜀
⊤(𝑡)𝑃1𝐺1(𝑡) −

2
𝛾(𝑡)

𝜀
⊤(𝑡)𝑃1𝐺̃2(𝑡) − ℎ

𝛾̇(𝑡)
𝛾(𝑡)

||𝜀(𝑡)||2

(21)

In the following, we estimate each terms. Begin with the second
term on the right hand; we get

− 2
𝛾(𝑡)

𝜀
⊤(𝑡)𝑃1𝐿Γ𝜀1(𝑡) ≤

1
4𝛾(𝑡)

||𝜀(𝑡)||2 +
𝑚1

𝛾(𝑡)
𝜀

2
1(𝑡) (22)

where 𝑚1 = 4||𝑃1𝐿Γ||2. Following the same analysis in (16), we
also can get the estimation

2
𝛾(𝑡)

𝜀
⊤(𝑡)𝑃1𝐺1(𝑡) ≤

2
𝛾(𝑡)

𝛽(𝑣(𝑡))||𝐾𝑃1||||𝜀(𝑡)||||𝜂(𝑡)||

≤
1

4𝛾(𝑡)
||𝜀(𝑡)||2 +

𝑚2

𝛾(𝑡)
||𝜂(𝑡)||2 (23)

where 𝑚2 = 4𝛽
2
||𝐾𝑃1||

2. For the fourth term, we obtain

2𝜀⊤(𝑡)𝑃1𝐺̃2(𝑡) ≤
2

𝛾2(𝑡)
𝜃||𝑃1||||𝜀(𝑡)||

× (𝑛||𝜀(𝑡)|| + (𝑛 + ||𝐾||
√
𝑛)||𝜂(𝑡)||)

≤
1

𝛾2(𝑡)
𝜃||𝑃1||(2𝑛 + 1)||𝜀(𝑡)||2

+ 1
𝛾2(𝑡)

𝜃||𝑃1||(𝑛 + ||𝐾||
√
𝑛)2||𝜂(𝑡)||2 (24)

Substituting (22–24) into (21), we get

𝑉̇ 1(𝑡) ≤ −
1

2𝛾(𝑡)
||𝜀(𝑡)||2 +

𝑚1

𝛾(𝑡)
𝜀

2
1(𝑡) +

𝑚2

𝛾(𝑡)
||𝜂(𝑡)||2

+ 1
𝛾2(𝑡)

𝜃||𝑃1||(2𝑛 + 1)||𝜀(𝑡)||2

+ 1
𝛾2(𝑡)

𝜃||𝑃1||(𝑛 + ||𝐾||
√
𝑛)2||𝜂(𝑡)||2

When 𝑐 ≥ max{4𝜃||𝑃1||(2𝑛 + 1), 1}, we get

𝑉̇ 1(𝑡) ≤ −
1

4𝑐𝑟(𝑡)
||𝜀(𝑡)||2 +

𝑚1

𝛾(𝑡)
𝜀

2
1(𝑡) +

𝑚2

𝛾(𝑡)
||𝜂(𝑡)||2

+ 1
𝛾2(𝑡)

𝜃||𝑃1||(𝑛 + ||𝐾||
√
𝑛)2||𝜂(𝑡)||2

≤ −𝑀1𝑉1(𝑡) +𝑀2
1

𝑟2𝑛+1(𝑡)
(
𝑦(𝑡) − 𝑧1(𝑡)

)2

+𝑀2

𝑛∑

𝑖=1

1
𝑟2𝑛+3−2𝑖(𝑠)

𝑧
2
𝑖
(𝑡)

where 𝑀1 =
1

16𝑐Θ||𝑃 ||
1

𝜆max(𝑃1)
, and 𝑀2 = max{𝑚1, 𝑚2 +

𝜃||𝑃1||(𝑛 + ||𝐾||
√
𝑛)2. Then, it holds

𝑉1(𝑡) ≤ 𝑒
−𝑀1(𝑡−𝑡0)𝑉1(𝑡0) +𝑀2

∫

𝑡

𝑡0

𝑒
−𝑀1(𝑡−𝑠)

×

(

1
𝑟2𝑛+1(𝑠)

(
𝑦(𝑠) − 𝑧1(𝑠)

)2 +
𝑛∑

𝑖=1

1
𝑟2𝑛+3−2𝑖(𝑠)

𝑧
2
𝑖
(𝑠)

)

𝑑𝑠

(25)

3528 International Journal of Robust and Nonlinear Control, 2025

 10991239, 2025, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7862 by L

e C
hang - Shanghai Jiaotong U

niversity , W
iley O

nline L
ibrary on [12/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



From (20), we get

lim
𝑡→+∞∫

𝑡

𝑡

2

(

1
𝑟2𝑛+1(𝑠)

(
𝑦(𝑠) − 𝑧1(𝑠)

)2 +
𝑛∑

𝑖=1

1
𝑟2𝑛+3−2𝑖(𝑠)

𝑧
2
𝑖
(𝑠)

)

𝑑𝑠 = 0

and there exists a positive constant 𝜌 such that

1
𝑟2𝑛+1(𝑡)

(
𝑦(𝑡) − 𝑧1(𝑡)

)2 +
𝑛∑

𝑖=1

1
𝑟2𝑛+3−2𝑖(𝑡)

𝑧
2
𝑖
(𝑡) ≤ 𝜌, ∀𝑡 ∈ [𝑡0,+∞)

Then, (25) can be expressed as

𝑉1(𝑡) ≤ 𝑒
−𝑀1(𝑡−𝑡0)𝑉1(𝑡0) +𝑀2

∫

𝑡

2

𝑡0

𝑒
−𝑀1(𝑡−𝑠)

×

(

1
𝑟2𝑛+1(𝑠)

(
𝑦(𝑠) − 𝑧1(𝑠)

)2 +
𝑛∑

𝑖=1

1
𝑟2𝑛+3−2𝑖(𝑠)

𝑧
2
𝑖
(𝑠)

)

𝑑𝑠

+𝑀2
∫

𝑡

𝑡

2

𝑒
−𝑀1(𝑡−𝑠)

×

(

1
𝑟2𝑛+1(𝑠)

(
𝑦(𝑠) − 𝑧1(𝑠)

)2 +
𝑛∑

𝑖=1

1
𝑟2𝑛+3−2𝑖(𝑠)

𝑧
2
𝑖
(𝑠)

)

𝑑𝑠

≤ 𝑒
−𝑀1(𝑡−𝑡0)𝑉1(𝑡0) +𝑀2𝜌

∫

𝑡

2

𝑡0

𝑒
−𝑀1(𝑡−𝑠)𝑑𝑠

+𝑀2
∫

𝑡

𝑡

2

(
1

𝑟2𝑛+1(𝑠)
(
𝑦(𝑠) − 𝑧1(𝑠)

)2

+
𝑛∑

𝑖=1

1
𝑟2𝑛+3−2𝑖(𝑠)

𝑧
2
𝑖
(𝑠)

)

𝑑𝑠

Since

∫

𝑡

𝑡0

𝑒
−𝑀1(𝑡−𝑠)𝑑𝑠 = 1

𝑀1

(

𝑒
−𝑀1

𝑡

2 − 𝑒
−𝑀1(𝑡−𝑡0)

)

we get lim
𝑡→+∞ 𝑉1(𝑡) = 0. Then, it holds lim

𝑡→+∞ ||𝑥(𝑡)|| =
lim

𝑡→+∞ ||𝑥(𝑡) − 𝑧(𝑡)|| + lim
𝑡→+∞ ||𝑧(𝑡)|| = 0.

Therefore, considering both cases, we conclude that
lim

𝑡→+∞ ||𝑥(𝑡)|| = 0 and lim
𝑡→+∞ ||𝑧(𝑡)|| = 0. This ends the

proof. ◽

Remark 4. When all the states are available to the control
design, the time-varying state feedback controller or the adap-
tive state feedback controller can be designed. In this case, the
dynamic 𝑣(𝑡) in (8) is changed as

𝑣(𝑡) = −
𝑘1

𝑟𝑛(𝑡)
𝑥1(𝑡) −

𝑘2

𝑟𝑛−1(𝑡)
𝑧2(𝑡) − · · · −

𝑘
𝑛

𝑟(𝑡)
𝑧
𝑛
(𝑡)

and the dynamic 𝑟(𝑡) can be designed to solve the state feedback
stabilization problem. The performance analysis is similar to that
in this paper, which is omitted here.

4 | Simulations

4.1 | Example 1

Consider the nonlinear liquid level control resonant circuit sys-
tem [11, 13]

⎧
⎪
⎪
⎨
⎪
⎪
⎩

i̇
𝐿1
(𝑡) = − v

𝑐
(𝑡)

𝐿1
−

𝑅
𝑎

(

i
𝐿2 (𝑡)−0.5 sin(v

𝑐
(𝑡))

)

𝐿1

v̇
𝑐
(𝑡) =

i
𝐿2 (𝑡)
𝐶

− 0.5 sin(v
𝑐
(𝑡))

𝐶

i̇
𝐿2
(𝑡) = −

𝑅
𝑏
i
𝐿2 (𝑡)
𝐿2

+ v(𝑡)
𝐿2

where v(𝑡) is a control input voltage, v
𝑐
(𝑡) is the voltage across

the capacitor 𝐶 , i
𝐿1

and i
𝐿2

are the currents through the tunnel
diode, 𝑅, 𝑅

𝑎
, and 𝑅

𝑏
are the resistances, and 𝐿1 and 𝐿2 are the

inductors.

Let the state 𝑥1(𝑡) = 𝐿1i
𝐿1
(𝑡), 𝑥2(𝑡) = −v

𝑐
(𝑡), and 𝑥3 =

− 1
𝐶

(
i
𝐿2
(𝑡) − 0.5 sin(v

𝑐
(𝑡))

)
. Choosing the pre-feedback

control input as v(𝑡) = −𝐿2𝐶𝑢 − 𝑅
𝑏
𝐶𝑥3 − 0.5𝑅

𝑏
sin(𝑥2) −

0.5𝐿2 cos(𝑥2)𝑥3. One supposes that 𝑅
𝑎
= ln(𝑐1𝑡 + 𝑐2)𝑢(𝑡) with

𝑐1, 𝑐2 being unknown positive constants. 𝐿1 = 𝐿2 = 1, 𝐶 = 10,
and 𝑅

𝑏
= 1. Then, we have the following system model

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑥̇1(𝑡) = 𝑥2(𝑡) + 10 ln(𝑐1𝑡 + 𝑐2)𝑢(𝑡)𝑥3(𝑡)
𝑥̇2(𝑡) = 𝑥3(𝑡)
𝑥̇3(𝑡) = 𝑢(𝑡)
𝑦(𝑡) = 𝑥1(𝑡)

(26)

It is obvious that (26) satisfies Assumption 1. We assume the ini-
tial instant 𝑡0 as 0. Following our dynamic time-varying method,
we can choose 𝑔

𝛼
(𝑠) = 𝛼𝑠

𝛼+|𝑠|
, and design the controller as

𝑢(𝑡) = 𝛼𝑣(𝑡)
𝛼 + |𝑣(𝑡)|

(27)

where

𝑣(𝑡) = −
𝑧1(𝑡)
𝑟3(𝑡)

− 3
𝑧2(𝑡)
𝑟2(𝑡)

− 3
𝑧3(𝑡)
𝑟(𝑡)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑧̇1(𝑡) = 𝑧2(𝑡) − 3 1
𝑟(𝑡)
(𝑧1(𝑡) − 𝑦(𝑡))

𝑧̇2(𝑡) = 𝑧3(𝑡) − 3 1
𝑟2(𝑡)

(𝑧1(𝑡) − 𝑦(𝑡))

𝑧̇3(𝑡) = 𝑣(𝑡) − 1
𝑟3(𝑡)

(𝑧1(𝑡) − 𝑦(𝑡))

(28)

And, the time-varying parameter is designed as

𝑟̇(𝑡) = 65|𝑣(𝑡)|
𝛼 + |𝑣(𝑡)|

+ 65𝑣2(𝑡)
(𝛼 + |𝑣(𝑡)|)2𝑟(𝑡)

+ 10−6
, 𝑟(0) = 1 (29)

By choosing the initial condition 𝑥(0) = (0.5,−0.3, 0.1)⊤, 𝑧(0) =
(0, 0, 0)⊤, we give the trajectory under different parameter 𝛼 in
Figure 1. It is shown that all the states are converging to the
equilibrium𝑥 = 0, 𝑧 = 0, which illustrates the effectiveness of our
result. We can see from Figure 1a that the system is converg-
ing at about instant 250 s when 𝛼 = 1. It has better performance
in Figure 1d and e. But the system performance is deduced in
Figure 1f, since the converging instant is larger than 40 s and the
upper bound is larger than 2 s. Thus, the system performance can
be optimized through choosing the parameter 𝛼.
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FIGURE 1 | The trajectory of the closed-loop system (26–29) under different 𝛼. (a) 𝛼 = 1 (b) 𝛼 = 10 (c) 𝛼 = 20 (d) 𝛼 = 30 (e) 𝛼 = 40 (f) 𝛼 = 50.

4.2 | Example 2

We consider another example to illustrate the effectiveness of
Theorem 2. Consider the nonlinear system

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑥̇1 = 𝑥2 + 10𝑢𝑥3

𝑥̇2 = 𝑥3 + 2𝑢2

𝑥̇3 = 𝑢

𝑦 = 𝑥1

(30)

where 𝑥 =
(
𝑥1, 𝑥2, 𝑥3

)⊤ is the system state, 𝑢 is the system input,
and 𝑦 is the system output. Following Theorem 2, we design the
control as

𝑢(𝑡) = 𝑔
𝛼
(𝑣(𝑡)) (31)

where

𝑣(𝑡) = −
𝑧1(𝑡)
𝑟3(𝑡)

− 3
𝑧2(𝑡)
𝑟2(𝑡)

− 3
𝑧3(𝑡)
𝑟(𝑡)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑧̇1(𝑡) = 𝑧2(𝑡) − 3 1
𝑟(𝑡)
(𝑧1(𝑡) − 𝑦(𝑡))

𝑧̇2(𝑡) = 𝑧3(𝑡) − 3 1
𝑟2(𝑡)

(𝑧1(𝑡) − 𝑦(𝑡))

𝑧̇3(𝑡) = 𝑣(𝑡) − 1
𝑟3(𝑡)

(𝑧1(𝑡) − 𝑦(𝑡))

(32)

The adaptive parameter 𝑟(𝑡) is designed as

𝑟̇(𝑡) = 65𝛽(𝑣(𝑡)) + 65𝛽2(𝑣(𝑡)) 1
𝑟(𝑡)

+
𝑧

2
1(𝑡)
𝑟7(𝑡)

+
𝑧

2
2(𝑡)
𝑟5(𝑡)

+
𝑧

2
3(𝑡)
𝑟3(𝑡)

+
(
𝑧1(𝑡) − 𝑦(𝑡)

)2

𝑟7(𝑡)
(33)

where 𝛽(𝑣(𝑡)) = |
|
|

𝑔
𝛼
(𝑣(𝑡))−𝑣(𝑡)
𝑣(𝑡)

|
|
|
.

We choose the initial condition 𝑥(0) = (0.5,−0.3, 0.1)⊤, 𝑧(0) =
(0, 0, 0)⊤. When 𝑔

𝛼
(𝑣) = 𝛼𝑣

𝛼+|𝑣|
, we give the trajectory under dif-

ferent parameter 𝛼 in Figure 2. We also consider 𝑔
𝛼
(𝑣) = 𝛼 ⋅

tanh
(

𝑣

𝛼

)

, and the trajectory is given in Figure 3. It is shown
that all the states are converging to the equilibrium 𝑥 = 0, 𝑧 = 0,
which illustrates the effectiveness of our result. It is also shown
that the system transient performance is dependent on the select-
ing parameter 𝛼.

5 | Conclusion

This paper proposes a novel method for designing a regulating
controller for feedforward nonlinear systems, where the nonlin-
ear terms have an unknown input-dependent rate. By introduc-
ing a bounded law, we simplified the complex incremental rate
into a more manageable form. We then applied both time-varying

3530 International Journal of Robust and Nonlinear Control, 2025
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FIGURE 2 | The trajectory of the closed-loop system (30–33) with 𝑔
𝛼
(𝑣) = 𝛼𝑣

𝛼+|𝑣|
under different 𝛼. (a) 𝛼 = 1 (b) 𝛼 = 10 (c) 𝛼 = 100 (d) 𝛼 = 300.
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FIGURE 3 | The trajectory of the closed-loop system (30–33) with 𝑔
𝛼
(𝑣) = 𝛼 ⋅ tanh

(
𝑣

𝛼

)

under different𝛼. (a)𝛼 = 1 (b)𝛼 = 10 (c)𝛼 = 100 (d)𝛼 = 300.

and adaptive methods to adjust the control gain. Since the control
gain was designed independently of 𝜙(𝑢), we were able to modify
its rate using a parameter 𝛼, potentially improving transient per-
formance. Future research will focus on more complex scenarios,
such as systems that include delays.
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