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Leader-follower Consensus of Upper-triangular
Nonlinear Multi-agent Systems

Chenghui Zhang Le Chang Xianfu Zhang

Abstract—This paper is concerned with the leader-follower
consensus problem by using both state and output feedback for
a class of nonlinear multi-agent systems. The agents considered
here are all identical upper-triangular nonlinear systems which
satisfy the Lipschitz growth condition. First, it is shown that the
leader-follower consensus problem is equivalent to the control
design problem of a high-dimensional multi-variable system.
Second, by introducing an appropriate state transformation, the
control design problem can be converted into the problem of
finding a constant parameter, which can be obtained by solving
the Lyapunov equation and estimating the nonlinear terms of the
given system. At last, an example is given to verify effectiveness
of the proposed consensus algorithms.

Index Terms—Multi-agent systems, leader-follower consensus,
upper-triangular nonlinear systems, Lipschitz condition.

I. INTRODUCTION

IN recent years, there has been an increasing research
interest in the coordinated control problems of the multi-

agent systems[1−11], which have wide applications in many
fields, such as biology, robotics, communications and sensor
networks, etc.

There are many unsolved problems in the research area
of multi-agent systems. One difficult problem is that the
structures of many multi-agent systems, especially some non-
linear multi-agent systems, are too complex to deal with.
A lot of literature has studied this problem, for example,
[2, 3, 10] studied the linear systems, [5, 8, 9, 11] dealt with
the second-order agent systems, [4] presented necessary and
sufficient conditions for the consensus of multi-agent systems
described by Vicsek′s model. Another difficult problem is that
the multi-agent systems greatly differ from each other in the
communication topologies. Reference [1] studied the problem
that the information received by each agent is corrupted by
measurement noises. References [11, 12] addressed consensus
problems when the information is with or without communica-
tion delay. Reference [13] worked on the consensus behavior
of multi-agent systems under digital network topology. The
consensus problem with input constraints was considered in
[14].

A critical problem for coordinated control is the consen-
sus problem, which is to design appropriate protocols and
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algorithms such that the group of agents can reach a con-
sensus on the shared information in the presence of limited
and unreliable information exchange. Recently, the consensus
problem has been studied for multi-agent systems in a general
form. Reference [2] studied the consensus problem for multi-
agent linear dynamic systems. Reference [6] designed the
global H∞ consensus algorithms for a class of multi-agent
nonlinear systems with Lipschitz non-linearity and directed
communication graphs.

Due to the existence of abundant nonlinear physical systems
in practical and the need of precise simulation to describe
many commonly observed phenomena, the study of nonlinear
multi-agent systems is getting more and more important.
Because of complexity of nonlinearity, there is no control
procedure which can be applied to all nonlinear multi-agent
systems. But there are several effective ways to design con-
trollers for some nonlinear systems that can be transformed
into specific nonlinear forms. The lower-triangular nonlinear
multi-agent systems have been studied in [7, 15, 16], but to our
best knowledge, there is no literature which has handled the
upper-triangular nonlinear multi-agent systems.

In our work, the leader-follower consensus problem is
studied for the upper-triangular nonlinear multi-agent systems
with fixed (time-invariant) communication topologies. The
consensus protocols of both the local state and observer-
based dynamic output are considered. Compared to the lower-
triangular systems studied in [7, 15, 16], the consensus problem
of the upper-triangular nonlinear systems is harder, as the input
appears in every nonlinear term.

Inspired by [17−20], we introduce a rescaling transforma-
tion and have a new design freedom to stabilize the errors
between the leader signals and follower signals. When the
full state is not available, observers can be designed such that
their signals asymptotically approach the signals of agents.
As a result, using the observer-based compensation, dynamic
output consensus protocol can be constructed. An example is
given to illustrate the proposed consensus algorithms at the
end of this paper.

Throughout this work, ‖ · ‖ denotes the Euclidean norm for
a vector, or the induced Euclidean norm for a matrix.

II. GRAPH THEORY AND PROBLEM STATEMENT

A. Graph Theory

In this section, we present some definitions, notations and
lemmas in graph theory, which will be used in our paper. A
simple graph is an undirected graph if it has no self-loops and
no more than one edge between any two different nodes. The
simple graph denoted by G(V,=,A) consists of an N node
set V , an edge set = and a weighted adjacency matrix A =
[aij ] ∈ RN×N . We denote the nodes in V as {s1, s2, · · · , sN}.
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The edge of the graph G, eij = (si, sj), belongs to =. The
graph is undirected, i.e., once eij ∈ =, then eji ∈ =. As the
graph is a simple graph, the adjacency matrix is defined as
aii = 0 and aij = aji ≥ 0 (i 6= j), where aij > 0 if and
only if eij ∈ =. A path in G between s1 and sj is a sequence
of edges of the form (s1, sk), k = 1, 2, · · · , j. The graph G
is said to be connected if there exists a path between any
two nodes of G. The neighbor set of node si is defined as
Ni = {sj ∈ V : eij ∈ =}. The degree of G is a diagonal
matrix D = diag{d1, · · · , dN}, where di =

∑
sj∈Ni

aij for
i = 1, 2, · · · , N . The Laplacian matrix of graph G is defined
as L = D − A. It is apparent that the Laplacian matrix L is
symmetric. H is a subgraph of G, i.e., any two nodes of H
are adjacent in H only if they are adjacent in G. Subgraph H
of G is called component of G if it is a maximal connected
subgraph.

We consider N modes in V as N agents, whose relationship
can be described by the simple and undirected graph G.
(si, sj) is an edge of G if and only if agent i and j are
neighbors. Moreover, we have another graph G̃ whose node
set is {s0}∪V . G is the subgraph of G̃, and s0 is considered as
the leader. The edge e0j = (s0, sj) exists if and only if agent
j connects to the leader (j = 1, 2, · · · , N). The degree matrix
of G̃ is denoted by B = diag{b1, · · · , bN}, where bi ≥ 0 is the
adjacency weight between agent i and the leader. bi = 0 means
that agent i does not connect to the leader. G̃ is connected if at
least one agent in each component of G is connected with the
leader. We define L̂ = L + B, and have the following useful
lemma about L̂.

Lemma 1[5, 7]. If graph G̃ is connected, then the symmetric
matrix L̂ associated with G̃ is positive definite.

B. Problem Statement

In this paper, we deal with a group of N + 1 agents with
identical upper-triangular nonlinear dynamics, where the agent
indexed by 0 is referred as the leader and the other agents
indexed by 1, 2, · · · , N are called followers. The communica-
tion topology of the N + 1 agents is denoted by G̃, while the
topology of the N followers is denoted by G. For the agents,
we have the following assumptions.

Assumption 1. All follower agents know the input of
the leader, and the information between the leader and any
follower agent is unidirectional, i.e., the leader receives no
information from any follower agent.

Assumption 2. The communication topology of the N + 1
agents is connected, i.e., the graph G̃ is connected.

For agent k (k = 0, 1, · · · , N), the system has the following
form





ẋk,1 = xk,2 + f1(t, xk,3, xk,4, · · · , xk,n, uk),
ẋk,2 = xk,3 + f2(t, xk,4, · · · , xk,n, uk),

...
ẋk,n−2 = xk,n−1 + fn−2(t, xk,n, uk),
ẋk,n−1 = xk,n + fn−1(t, uk),
ẋk,n = uk,
yk = xk,1,

(1)

where xk,i ∈ R (i = 1, 2, · · · , n), yk ∈ R and uk ∈ R repre-
sent the state, output, and input of the kth agent, respectively,
and nonlinear function fi (i = 1, 2, · · · , n− 1) represents the

nonlinear effect within the kth agent, and satisfy the following
growth assumption.

Assumption 3. For p, q = 0, 1, · · · , N, and any
(t, xp,i+2, · · · , xp,n, up), (t, xq,i+2, · · · , xq,n, uq) ∈ Rn−i+1

(i = 1, 2, · · · , n− 1), there exists a constant c > 0, such that

|fi(t, xp,i+2, · · · , xp,n, up)− fi(t, xq,i+2, · · · , xq,n, uq)| ≤

c




n−1∑

j=i

|xp,j+2 − xq,j+2|+ |up − uq|

 , (2)

where xp,n+1 = xq,n+1 = 0.

Remark 1. Reference [7] considered the leader-follower
consensus problem of a class of multi-agent systems in the
lower-triangular form. Hence, the problem considered here can
be viewed as the counterpart of that in [7]. In our work, the
input of the kth agent can be allowed to be included in all
nonlinear terms of the kth agent, which makes our design
procedure more complicated, compared with [7].

System (1) can be rewritten in the matrix form,

ẋxxk = Axxxk + Buk + fff(t,xxxk, uk), (3)

where xxxk = [xk,1, xk,2, · · · , xk,n]T,
B = [0, 0, · · · , 0, 1]T, fff(t,xxxk, uk) =
[f1(t, xk,3, · · · , xk,n, uk), · · · , fn−1(t, uk), 0]T, and

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0




.

Definition 1[7]. The leader-follower consensus problem of
the nonlinear multi-agent system (1) can be solved by con-
sensus protocol uk, if and only if under the protocol uk, for
any initial condition xxxk(0) (k = 1, 2, · · · , N), the state xxxk(t)
of the follower agent k asymptotically approaches the state
xxx0(t) of the leader, as t → +∞. That is,

lim
t→+∞

‖xxxk(t)− xxx0(t)‖ = 0, k = 1, 2, · · · , N.

Our objective is to design consensus protocols by both the
state and output feedback, which solve the leader-follower
consensus problem of the nonlinear multi-agent system (1).

As defined above, G̃ and G are the communication topolo-
gies of the N + 1 agents and the N follower agents, respec-
tively. We use matrix L and B to denote the Laplacian matrix
of G and the degree matrix of G̃, respectively. We get L̂ by
L̂ = L+B. According to Lemma 1, L̂ is positive definite. We
have the following useful lemma about L̂.

Lemma 2[7]. If L̂ is positive definite, then there exists a
row vector K such that the matrix IN ⊗ A + L̂ ⊗ BK is
Hurwitz. Furthermore, there exists a positive definite matrix
P satisfying

P (IN ⊗A + L̂ ⊗BK) + (IN ⊗A + L̂ ⊗BK)TP = −2I.
(4)
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III. MAIN RESULTS

A. State Feedback Control
Our main result of the state feedback control problem with

the full states known, can be summarized as the following
theorem.

Theorem 1. Under Assumptions 1∼3, the leader-follower
consensus problem of the nonlinear multi-agent system (1) can
be solved by the consensus protocol of the following form, for
k = 1, 2, · · · , N,

uk =
1

Ln
KH




N∑

j=1

akj(xxxk − xxxj) + bk(xxxk − xxx0)


 + u0,

(5)

where K is a row vector given in Lemma 2, and diagonal
matrix H = diag{1, L, · · · , Ln−1}, with L ≥ 1 being a
constant large enough.

Proof. For the consensus problem, we need to consider the
state errors between the leader and followers.

For k = 1, 2, · · · , N, let ek,i = xk,i−x0,i (i = 1, 2, · · · , n),
we have 




ėk,1 = ek,2 + f̄k,1,
ėk,2 = ek,3 + f̄k,2,

...
ėk,n−1 = ek,n + f̄k,n−1,
ėk,n = ∆uk,

(6)

where ∆uk = uk − u0, and f̄k,i =
fi(t, xk,i+2, · · · , xk,n, uk) − fi(t, x0,i+2, · · · , x0,n, u0),
i = 1, 2, · · · , n− 1.

The consensus error dynamics (6) can be rewritten as

ėeek = Aeeek + B∆uk + f̄ffk, (7)

where f̄ffk = [f̄k,1, · · · , f̄k,n−1, 0]T, eeek = [ek,1, · · · , ek,n]T,
and A, B are given in (3).

Introducing a transformation of coordinates

εεεk = Heeek, k = 1, 2, · · · , N,

where H = diag{1, L, · · · , Ln−1}, with L ≥ 1 being a
constant to be determined later, system (7) can be converted
into

ε̇εεk =
1
L

Aεεεk + Ln−1B∆uk + FFF k, (8)

where FFF k = Hf̄ffk.
Denoting εεε = [εεεT

1 , εεεT
2 , · · · , εεεT

N ]T, and using (5), the consen-
sus error dynamics (8) can be further rewritten in the compact
form of

ε̇εε =
1
L

IN ⊗Aεεε +
1
L
L̂ ⊗BKεεε + FFF, (9)

where FFF = [FFFT
1 ,FFFT

2 , · · · ,FFFT
N ]T, and L̂ is defined by the

communication topology.
Let V = εεεTPεεε, where P is given in Lemma 2. The

derivative of V along system (9) is given as

V̇ |(9) = 2εεεTPFFF +
1
L

εεεT
[
(IN ⊗A + L̂ ⊗BK)T P+

P (IN ⊗A + L̂ ⊗BK)
]
εεε = − 2

L
εεεTεεε + 2εεεTPFFF.

(10)

To get the estimation of the term 2εεεTPFFF , the following
estimation of ∆uk and f̄k,i, which are contained in FFF , is
needed.

Noticing the definition of ∆uk in (5) and (6), we can get
the following derivation

|∆uk|2 =

∣∣∣∣∣∣
1

Ln
KH




N∑

j=1

akj(xxxk − xxxj) + bk(xxxk − xxx0)




∣∣∣∣∣∣

2

=

1
L2n




N∑

j=1

akj(εεεk − εεεj) + bkεεεk




T

KTK×



N∑

j=1

akj(εεεk − εεεj) + bkεεεk


 ≤

1
L2n

‖KTK‖(Akεεε)T(Akεεε) ≤
1

L2n
‖KTK‖‖AT

k Ak‖‖εεε‖2, (11)

where Ak is defined as Ak = αk ⊗ In, with αk being the kth
row of matrix L̂.

Using (2) in Assumption 3 and L ≥ 1, the estimates of
f̄k,i (i = 1, 2, · · · , n− 1) have the following form

|Li−1f̄k,i| ≤ cLi−1




n−1∑

j=i

|ek,j+2|+ |∆uk|

 ≤

c




n−1∑

j=i

| εk,j+2

Lj−i+2
|+ 1

L2

√
‖KTK‖‖AT

k Ak‖‖εεε‖

 ≤

c

L2

(
1 +

√
‖KTK‖‖AT

k Ak‖
)
‖εεε‖, (12)

where ek,n+1 = εk,n+1 = 0.
With the help of (12), from the definition of FFF in (9), we

can get

‖FFF‖2 =
N∑

k=1

FFFT
k FFF k =

N∑

k=1

(Hf̄ffk)THf̄ffk =

N∑

k=1

(|f̄k,1|2 + L2|f̄k,2|2 + · · ·+ L2n−4|f̄k,n−1|2) ≤

β2

L4
‖εεε‖2, (13)

where β is dependent on the known constants
‖KTK‖, ‖AT

k Ak‖ and c. Actually, if β ≥
max1≤k≤N c(1 +

√
‖KTK‖‖AT

k Ak‖), (13) holds.
With (13) and (10), we have

V̇ |(9) ≤ − 2
L
‖εεε‖2 + 2‖P‖ β

L2
‖εεε‖2.

Choosing L ≥ max{β‖P‖, 1}+ α, where α is any positive
constant, we get

V̇ |(9) ≤ −2α

L2
‖εεε‖2.

Thus, the state εεε exponentially converges to the origin, i.e.,
consensus errors eeek (k = 1, 2, · · · , N) converge to the origin.
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So we get the full state consensus protocol (5), which solves
the leader-follower consensus problem. ¤

Remark 2. Both KTK and AT
k Ak are positive definite

matrices, so their norms can be replaced by the maximum
of their eigenvalues.

Remark 3. From the definition Ak = αk ⊗ In in (11), one
can calculate that

AT
k Ak = (αk ⊗ In)T(αk ⊗ In) =

(αT
k αk)⊗ In.

Since det(λIN−αT
k αk) = λN−1|λ−αkαT

k |, all eigenvalues
of AT

k Ak equal 0 or αkαT
k . It is easy to get the maximal

eigenvalue of AT
k Ak.

Remark 4. It can be seen that the study of upper-triangular
multi-agent systems is more difficult than that of lower-
triangular multi-agent systems, as the input is allowed to ap-
pear in each nonlinear term of the upper-triangular multi-agent
systems. To our best knowledge, there is no literature dealing
with the upper-triangular multi-agent systems. Compared with
the technologies used to study the lower-triangular multi-agent
systems in [7, 15, 16], the algorithm in our paper is novel and
easy to design.

B. Output Feedback Control

In this section, the output feedback protocol problem is
considered when the full state is not available.

First, we construct the observers for all agents and the inputs
for the follower agents.

Following the ideas of [17−20], the observer of every agent
has the following form, for k = 0, 1, · · · , N ,





˙̂xk,1 = x̂k,2 + f1(t, x̂k,3, · · · , x̂k,n, uk) + c1
L (xk,1 − x̂k,1) ,

˙̂xk,2 = x̂k,3 + f2(t, x̂k,4, · · · , x̂k,n, uk) + c2
L2 (xk,1 − x̂k,1) ,

...
˙̂xk,n−2 = x̂k,n−1 + fn−2(t, x̂k,n, uk) + cn−2

Ln−2 (xk,1 − x̂k,1) ,
˙̂xk,n−1 = x̂k,n + fn−1(t, uk) + cn−1

Ln−1 (xk,1 − x̂k,1) ,
˙̂xk,n = uk + cn

Ln (xk,1 − x̂k,1) ,
(14)

where L ≥ 1 will be determined later, and ci ≥ 0 (i =
1, 2, · · · , n) are coefficients of a Hurwitz polynomial

q(s) = sn + c1s
n−1 + · · ·+ cn−1s + cn.

The input of agent k has the form of

uk =
1

Ln
KH




N∑

j=1

akj(x̂xxk − x̂xxj) + bk(x̂xxk − x̂xx0)


 + u0,

(15)

where diagonal matrix H = diag{1, L, · · · , Ln−1}, x̂xxk =
[xk,1, xk,2, · · · , xk,n] is the state variable of observers, and
K is the row vector determined in Lemma 2.

For the kth agent, the observer error is defined as x̃k,j =
x̂k,j − xk,j (j = 1, 2, · · · , n). From (1) and (14), a simple
calculation gives





˙̃xk,1 = x̃k,2 + f̄k,1 − c1
L x̃k,1,

˙̃xk,2 = x̃k,3 + f̄k,2 − c2
L2 x̃k,1,

...
˙̃xk,n−2 = x̃k,n−1 + f̄k,n−2 − cn−2

Ln−2 x̃k,1,
˙̃xk,n−1 = x̃k,n + f̄k,n−1 − cn−1

Ln−1 x̃k,1,
˙̃xk,n = − cn

Ln x̃k,1,

where f̄k,i = fi(t, x̂k,i+2, · · · , x̂k,n, uk) −
fi(t, xk,i+2, · · · , xk,n, uk), for i = 1, 2, · · · , n− 1.

We denote x̃xxk = [x̃k,1, x̃k,2, · · · , x̃k,n]T. Similar to the idea
of [20], we introduce the transformation XXXk = Hx̃xxk, and have
that

ẊXXk =
1
L

C̄XXXk + f̄ffk, (16)

where

C̄ =




−c1 1 0 · · · 0
−c2 0 1 · · · 0

...
...

...
. . .

...
−cn−1 0 0 · · · 1
−cn 0 0 · · · 0




, f̄ffk =




f̄k,1

Lf̄k,2

...
Ln−2f̄k,n−1

0




.

Since q(s) is a Hurwitz polynomial, it can be concluded that
C̄ is a stable matrix. Therefore, there exists a positive definite
matrix P̄ such that

P̄ C̄ + C̄TP̄ = −I.

Let V̄k = XXXT
k P̄XXXk (k = 0, 1, · · · , N) be the Lyapunov

functions, and we have

˙̄Vk|(16) ≤ − 1
L
‖XXXk‖2 + 2‖XXXk‖‖P̄‖‖f̄ffk‖. (17)

Now we give the estimation of ‖f̄ffk‖ in (17). Noticing f̄ffk =
[f̄k,1, · · · , f̄k,n−1, 0]T, from Assumption 3, one has, for i =
1, 2, · · · , n− 1,

|Li−1f̄k,i| ≤ cLi−1
n−1∑

j=i

|x̃k,j+2| ≤ c

L2

√
n‖XXXk‖.

Hence
˙̄Vk|(16) ≤ − 1

L
‖XXXk‖2 + 2‖XXXk‖‖P̄‖‖f̄ffk‖ ≤ (18)

− 1
L
‖XXXk‖2 +

2nc‖P̄‖
L2

‖XXXk‖2.
Second, we will consider the errors between the observers.

For k = 1, 2, · · · , N, denoting eeek = x̂xxk − x̂xx0, where x̂xxk =
[x̂k,1, · · · , x̂k,n]T, x̂xx0 = [x̂0,1, · · · , x̂0,n]T and introducing a
rescaling transformation εεεk = Heeek, with (14), one can obtain

ε̇εεk =
1
L

Aεεεk + Ln−1B∆uk + FFF k +
1
L

Cx̃xxk − 1
L

Cx̃xx0 (19)

where A, B are given in (3), ∆uk = uk − u0, FFF k = Hf̂ffk,
with f̂ffk = fff(t, x̂xxk, uk)− fff(t, x̂xx0, u0), and

C =




−c1 0 · · · 0
−c2 0 · · · 0

...
...

...
...

−cn 0 · · · 0


 .
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Introducing (15) into (19), we get

ε̇εεk =
1
L

Aεεεk +
1
L

BK




N∑

j=1

akj(εεεk − εεεj) + bkεεεk


 +

FFF k +
1
L

Cx̃xxk − 1
L

Cx̃xx0, k = 1, 2, · · · , N. (20)

Denoting εεε = [εεεT
1 , · · · , εεεT

N ]T, XXX = [x̃xxT
1 − x̃xxT

0 , · · · , x̃xxT
N −

x̃xxT
0 ]T, FFF = [FFFT

1 , · · · ,FFFT
N ]T, the compact form of (20) can be

written as

ε̇εε =
1
L

(IN ⊗A)εεε +
1
L

(L̃ ⊗BK)εεε +
1
L

(IN ⊗ C)XXX + FFF,

(21)

where L̂ is defined by the communication topology.
From Lemma 2, one knows that there exists a positive

definite matrix P such that (4) holds.
We consider the Lyapunov function V1 = εεεTPεεε, whose

derivative along system (21) is

V̇1|(21) = − 2
L
‖εεε‖2 +

2
L

εεεTP (IN ⊗ C)XXX + 2εεεTPFFF. (22)

To get the estimation of the term 2εεεTPFFF , the following
estimation of ∆uk and f̂ffk, which are contained in FFF , is
needed.

From the definition of ∆uk in (15) and (19), we can get

|∆uk| =
∣∣∣∣∣∣

1
Ln

KH




N∑

j=1

akj(x̂xxk − x̂xxj) + bk(x̂xxk − x̂xx0)




∣∣∣∣∣∣
=

1
Ln
‖K‖

∣∣∣∣∣∣




N∑

j=1

akj(εεεk − εεεj) + bkεεεk




∣∣∣∣∣∣
≤

1
Ln
‖K‖‖Ak‖‖εεε‖,

where Ak is defined as Ak = αk ⊗ In, with αk being the kth
row of matrix L̂.

To estimate f̂ffk, we need to estimate f̂k,i which is the ith
element of f̂ffk. For i = 1, 2, · · · , n− 1, we have

Li−1|f̂k,i| = Li−1|fi(t, x̂k,i+2, · · · , x̂k,n, uk)−
fi(t, x̂0,i+2, · · · , x̂0,n, u0)| ≤
c

L2

√
n‖εεεk‖+

c

L2
‖K‖‖Ak‖‖εεε‖.

Using the estimation for Li−1f̂k,i, we can get the estimation
of ‖FFF‖ as follows

‖FFF‖2 =
N∑

k=1

‖FFF k‖2 ≤

N∑

k=1

n
( c

L2

√
n‖εεεk‖+

c

L2
‖K‖‖Ak‖‖εεε‖

)2

≤

N∑

k=1

(
2c2

L4
n2‖εεεk‖2 +

2c2

L4
n‖K‖2‖Ak‖2‖εεε‖2

)
≤

β2

L4
‖εεε‖2, (23)

where β is dependent on the known constants ‖Ak‖, ‖K‖, c,
n and N .

From (22) and (23), one obtains

V̇1|(21) ≤ − 2
L
‖εεε‖2 +

2
L
‖εεε‖‖P‖‖IN ⊗ C‖‖XXX‖+

2‖εεε‖‖P‖‖FFF‖ ≤
− 2

L
‖εεε‖2 + ‖P‖‖IN ⊗ C‖( 1

L2
‖εεε‖2 + ‖XXX‖2)+

2β

L2
‖P‖‖εεε‖2 ≤

− 2
L
‖εεε‖2 +

1
L2

(‖IN ⊗ C‖+ 2β)‖P‖‖εεε‖2+
‖P‖‖IN ⊗ C‖‖XXX‖2. (24)

Theorem 2. Under Assumptions 1∼3, the consensus prob-
lem of the multi-agent system (1) can be solved by the
dynamic output consensus protocol of the form (14) and (15).

Proof. We choose the Lyapunov function as

V = V1 +
N∑

k=0

rkV̄k,

where V1 and V̄k have been defined before, rk (k =
0, 1, · · · , N) are positive constants to be decided later.

With (18) and (24), the derivative of V has the following
calculation

V̇ |(16),(21) = V̇1 +
N∑

k=0

rk
˙̄Vk ≤

N∑

k=0

(
−rk

L
‖XXXk‖2 + rk

2nc‖P̄‖
L2

‖XXXk‖2
)
− 2

L
‖εεε‖2+

1
L2

(‖IN ⊗ C‖+ 2β)‖P‖‖εεε‖2 + ‖P‖‖IN ⊗ C‖‖XXX‖2.
If we choose

L ≥ max{‖P‖(β +
1
2
‖IN ⊗ C‖), 2nc‖P̄‖, 1}+ α2, α2 > 0,

rk ≥ 2
Ln−2

‖P‖‖IN ⊗ C‖+ α2, k = 1, 2, · · · , N,

r0 ≥ 2N

Ln−2
‖P‖‖IN ⊗ C‖+ α2,

then, we can get

V̇ |(16),(21) ≤ −α2

L2
‖εεε‖2 −

N∑

k=0

α2

L2
‖XXXk‖2.

Thus, the state x̂xxk − x̂xx0 of the closed-loop system (1) and
(14) with protocol (15) is asymptotically stable at x̂xxk−x̂xx0 = 0.

Noticing the fact that L satisfies L ≥ max{2nc‖P̄‖, 1}+α2,
and using (22), one can get

˙̄Vk|(16) ≤ −α2

L2
‖XXXk‖2,

which indicates XXXk is asymptotically stable at XXXk = 0. With
the definition of XXXk in (16), x̃xxk is also asymptotically stable
at x̃xxk = 0.

As xxxk−xxx0 = x̂xxk−x̂xx0−x̃xxk+x̃xx0, with the knowledge that the
terms x̂xxk − x̂xx0, x̃xxk, and x̃xx0 are all asymptotically stable under
protocol (14) and (15), it is certain that the global asymptotic
stability of term xxxk−xxx0 is guaranteed. Then the protocol (14)
and (15) can be used to solve the consensus reaching problem
of the multi-agent system (1).
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¤
Remark 5. It is obvious that the observer of every agent

used in our paper can only use the output signal of its own
agent. This is much simpler and more efficient to design the
observers for multi-agent system.

IV. A NUMERICAL EXAMPLE

To illustrate the designed protocols, the following numerical
example is presented.

We consider a group of 3 + 1 agents with the identical
nonlinear dynamics, which are indexed by 0, 1, 2, 3. In this
multi-agent system, the agent indexed by 0 is referred as the
leader, and the agents indexed by 1, 2, 3 are called followers.
We also assume that all the follower agents know the input of
the leader. For k = 0, 1, 2, 3, agent k is described by





ẋk,1 = xk,2 + 1
5+sin2 uk

xk,3 + 1
6 sin(uk),

ẋk,2 = xk,3 + 1
5+2e−t uk,

ẋk,3 = uk,
yk = xk,1.

(25)

The communication topology graph is shown in Fig. 1.

Fig. 1. Communication topology.

The adjacency matrix and degree matrix of the follower
agents are denoted by A and B, respectively. From Fig. 1, A
and B can be defined as follows

A =




0 0 0
0 0 1
0 1 0


 ,B =




4 0 0
0 4 0
0 0 4


 .

It is easy to verify that Assumptions 1∼3 hold for this multi-
agent system, and c = 0.2.

First, the state feedback consensus protocol provided in
Section III-A has the form of

uk = KH




3∑

j=1

akj(xxxk − xxxj) + bk(xxxk − xxx0)


 + u0, (26)

where K = [−0.2,−0.7,−0.6], H = diag{ 1
L3 , 1

L2 , 1
L}, with

L = 10, akj is the element in the kth row and jth column of
matrix A, and bk is the kth diagonal element of matrix B.

Fig. 2 shows the state responses of the closed-loop system
consisting of (25) and (26), with the initial condition that

xxx0(0) = [2,−2, 0]T, xxx1(0) = [1, 0,−1]T,

xxx2(0) = [0,−1, 1]T, xxx3(0) = [−1, 1, 0]T,

and u0(t) = 0.
It can be seen that the signals of all follower agents do

asymptotically tend to the states of the leader in Fig. 3, which
shows the convergence of errors between the signals of the
leader and followers.

Second, we consider the output feedback consensus prob-
lem. Using the method in Section III-B, the observer for agent
k(k = 0, 1, 2, 3) can be designed as



˙̂xk,1 = x̂k,2+ 1
5+sin2 (uk)

x̂k,3 + 1
6 sin(uk) + 1.1

L (xk,1 − x̂k,1) ,
˙̂xk,2 = x̂k,3+ 1

5+2e−t uk + 0.8
L2 (xk,1 − x̂k,1) ,

˙̂xk,3 =uk+ 0.1
L3 (xk,1 − x̂k,1) .

(27)

(a) The states xk,1

(b) The states xk,2

(c) The states xk,3

Fig. 2. The state responses of the closed-loop system with state
consensus protocol.

Then, for k = 1, 2, 3, the input uk of each follower agent
has the following form

uk =
1
L3

KH




3∑

j=1

akj(x̂xxk − x̂xxj) + bk(x̂xxk − x̂xx0)


 , (28)

where x̂i,j is defined in (27), akj is the element in the kth
row and jth column of the matrix A, bk is the kth diagonal
element of the matrix B, K = [−0.2,−0.7,−0.6], and H =
diag{ 1

L3 , 1
L2 , 1

L}, with L = 20.
We also set the initial condition as before and the initial

observer signals to be zero. Figs. 4 and 5 show the states,
the errors of the signals between the leader and followers
of the closed-loop system consisting of (25), (27) and (28),
respectively.

(a) The errors xk,1 − x0,1
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(b) The errors xk,2 − x0,2

(c) The errors xk,3 − x0,3

Fig. 3. The error responses of the closed-loop system with state
consensus protocol.

(a) The states xk,1

(b) The states xk,2

(c) The states xk,3

Fig. 4. The states responses of the closed-loop system with output
consensus protocol.

(a) The errors xk,1 − x0,1

(b) The errors xk,2 − x0,2

(c) The errors xk,3 − x0,3

Fig. 5. The error responses of the closed-loop system with output
consensus protocol.

V. CONCLUSIONS

In this paper, we study the leader-follower consensus prob-
lem for a class of nonlinear multi-agent systems. Each agent
has the identical nonlinear form and is coupled with an
undirected communication topology. Different from [7], in
our work, the input of the kth agent can be included in
all nonlinear terms of the kth agent. Under the condition
of undirected communication, we construct two consensus
protocols, full state and dynamic output consensus protocol,
for a class of nonlinear multi-agent systems.
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