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ABSTRACT
This paper aims to address the leader–follower regulation problem of multi-agent systems with
directed network topologies, where the agents are described by feedforward nonlinearities with the
growth ratebeingunknownapriori. Both the state feedback regulationprotocol and theoutput feed-
back regulation protocol are delicately constructed such that all the states of followers can converge
to the leader state globally. In this paper, a model transformation is firstly performed and the leader–
follower regulation problem can be transformed into a general regulation problem. Then, by intro-
ducing an appropriate state transformation, the regulationproblemcanbe changed into aparameter
determined problem. It is proved that the parameter can be determined by both the properties of M-
matrices and the estimates of nonlinear terms. Finally, a numerical example is presented to show the
feasibility of designed protocols.

1. Introduction

The multi-agent system has drawn much attention from
researchers in recent years (see e.g. Lynch, 1996; Peng and
Yang, 2009), due to its broad range of applications such
as unmanned air vehicles, microgrids, mobile robots and
multiple agents. Cao, Yu, Ren, and Chen (2013) gave an
overview of papers about the distributed coordination of
multiple vehicles, and summarised some research direc-
tions including the study of consensus. The regulation
problem for multi-agent systems is a generalisation of the
leader–follower consensus problem (see e.g. Su &Huang,
2014), and has recently received more and more atten-
tion (see e.g. Li, Duan, Xie, & Liu, 2012; Wang, Ni, &Ma,
2015).

Recently, the considered problem is rising for the
nonlinear multi-agent systems as the nonlinearity
is ubiquitous in physical phenomena. Specifically,
some researchers have been focusing on the cases
when the agents can be described as the strict feed-
back forms. Wang and Ji (2012) studied the con-
sensus protocol for multi-agent systems, where the
feedback dynamic only can satisfy Lipschitz condi-
tions with known constant gains. Yoo (2013) devel-
oped both the function approximation technique
and the recursive computation method to study
the tracking problem for uncertain feedback multi-
agent systems. Zhang, Liu, and Feng (2015) presented
the dynamic high-gain method to study the time-varying
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multi-agent system, where the designed controller can
maintain a time-varying gain. Liu and Liang (2016) stud-
ied the finite-time consensus problem for the feedback
multi-agent system, where the constructed algorithm can
render the considered system consensus in a finite time.

However, little results about the multi-agent system
have been published for the feedforward cases which are
widely considered in the classical nonlinear problem. To
fill the gap, we elaborate the regulation results for directed
multi-agent systems, where the agents are represented
as unknown feedforward dynamics. It is noted that we
mainly focus on studying in the theoretical field of feed-
forward systems, which is analogous to the study of feed-
back multi-agent systems (see e.g. Liu & Liang, 2016;
Wang & Ji, 2012; Yoo, 2013; Zhang et al., 2015). Mean-
while, feedforward systems can represent many physical
systems (see e.g. Tan, Lai, Tse, & Cheung, 2006), which
gives certain practical significance to this result.

To solve this considered problem, a decentralised
dynamic low-gain technology is developed to construct
both the state feedback protocol and the output feed-
back protocol. Our main contributions are summarised
below.

� The low-gain technology is developed to study
uncertain feedforward systems, which can not be
studied by the classical technology, such as the
forward technology, the adding integrations tech-
nology, and the saturated controls technology.
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Moreover, the study of uncertain feedforward sys-
tems is more challenging and difficult than that of
feedback cases as the low gain is difficult to tackle
the uncertain growth. Specifically, the rate of the
dynamic gain is determined to dominant the uncer-
tain feedforward systems, while the dynamic gain
without considering its rate was chosen by Qian and
Lin (2003) for classical uncertain feedback systems.

� We consider the multi-agent system with feedfor-
ward dynamics in the directed network. Up to now,
to the best of our knowledge, there is no result focus-
ing on directed feedforward multi-agent systems.
Moreover, the feedforward dynamic satisfies a very
general growth condition and the precise knowledge
of the growth gain is not required to be known a
priori. This is a generation of our former work (see
Zhang, Chang, & Zhang, 2014), where the agents in
an undirected network are represented as feedfor-
ward dynamics with no uncertainties.

This paper is organised as follows. Section 2 formu-
lates the considered problem and gives some basic Lem-
mas. Section 3 presents themain approaches to design the
regulation protocols. A numerical example is presented in
Section 4. Section 5 gives some concluding remarks.

In this paper, I denotes the unit matrix of the corre-
sponding dimension, and the arguments of functions are
sometimes simplified, for instance, a function f(x(t)) is
denoted by f(x).

2. Problem formulation

In this part, we describe the problem of this paper, and
present some basic Lemmas which are essential to the
proof of our main results. Without loss of generality, the
leader is labelled as 1, while the followers are labelled as
2, 3,… , N. The motion of each agent is described as

ẋk,i = xk,i+1 + fi(t, x̄k,i+1, uk), i = 1, 2, . . . , n − 1
ẋk,n = uk
yk = xk,1, k = 1, 2, . . . ,N. (1)

where x̄k,i+1 = [xk,i+2, xk,i+3, . . . , xk,n]T ∈ R
n−i−1 , xk =

[xk,1, xk,2, . . . , xk,n]T ∈ R
n is the state of agent k, uk ∈ R

and yk ∈ R are the input and output of agent k, respec-
tively. We assume that the continuous functions fi( · ),
i = 1, 2,… , n − 1, in system (1), satisfy the following
Assumption.

Assumption 2.1: For i = 1, 2,… , n − 1, and any
(t, x̄k,i+1, uk), (t, x̄1,i+1, u1)� R

+ × R
n−i−1 × R, k = 2,

3,… , N, the following inequality holds:

∣∣ fi (t, x̄k,i+1, uk
) − fi

(
t, x̄1,i+1, u1

)∣∣
≤ δ

n+1∑
j=i+2

∣∣xk, j − x1, j
∣∣ , (2)

where xk,n+1 = uk, x1, n+1 = u1, and δ is an unknown non-
negative constant.

Remark 2.1: This considered nonlinear terms are
affected not only by the measurement input, but also by
the uncertain terms. It is noted that the agent dynamic is
commonly considered in the study of classical nonlinear
systems when δ is a known constant. However, there are
few results considering the feedforward dynamic when δ

is an unknown constant.

To simplify the description, the dynamic of agent k can
also be rewritten as the following matrix form:

ẋk = Axk + Buk + Fk,
yk = Cxk, (3)

where A =

⎡
⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎦,

Fk =

⎡
⎢⎢⎣

f1
(
t, x̄k,2, uk

)
f2

(
t, x̄k,3, uk

)
...

fn−1 (t, uk )
0

⎤
⎥⎥⎦, and C = [1, 0,… , 0, 0].

Meanwhile, the communication topology of N agents
is denoted as a graph G and a weight matrix A with the
leader being the root. It is necessary to assume that the
graph G contains a directed spanning tree and all the fol-
lowers know the input of the leader agent, which is com-
monly considered in the study of multi-agent systems,
such as the researches considered in Wen, Peng, Rah-
mani, and Yu (2014), Meng, Jia, and Du (2015), and Yoo
(2013). Based on the definition of the Laplacian matrixL
(see e.g. Wen, Hu, Yu, Cao, & Chen, 2013), one can easily
get that the Laplacian matrix L has the following form:

L =
[
0 0
η L̂

]
, (4)

with η ∈ R
N−1 being a non-zero column vector, and L̂ ∈

R
(N−1)×(N−1) being an M-matrix.
The objective of this paper is to design the protocol uk,

k= 2, 3,… ,N, for each follower based on its neighbours’
information, such that the leader–follower regulation of
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multi-agent system (3), (4) is achieved, that is,

lim
t→+∞ ‖xk(t ) − x1(t )‖ = 0, k = 2, 3, . . . ,N.

Remark 2.2: The external input u1 is reasonable to be
existed in the multi-agent system, which has been widely
considered in the existing researches (see e.g. Wang & Ji,
2012; Wen et al., 2013; Zhang et al., 2014, 2015). More-
over, the external input u1 can represent a variable in
the industrial process, such as the user requirement in
micro-grids, or the man controlled leader in a group
of autonomous agent including unmanned aerial vehi-
cles, unmanned ground vehicles, and unmanned under-
sea vehicles.

Lemma 2.1 (Wen et al., 2013): Suppose that the directed
graph G contains a directed spanning tree. Then, 0 is a sim-
ple eigenvalue of its Laplacian matrix L, and the real part
of all the other eigenvalues is positive.

Lemma 2.2 (Berman & Plemmons, 1979; Wen et al.,
2013): The following propositions are equivalent for a
matrix L̂ = [li j](N−1)×(N−1) ∈ R

(N−1)×(N−1).

(1) L̂ is an M-matrix.
(2) lij � 0, i � j, and there exists a positive definite

diagonal matrix R = diag{r1, r2,..., rN − 1} such that
L̂R + RL̂T > 0.

(3) lij � 0, i� j, and each of its eigenvalues has the pos-
itive real part.

Remark 2.3: From the second proposition of Lemma 2.2,
one can achieve that there exists a positive definite matrix
R = diag{r1, r2,… , rN − 1} such that L̂R + RL̂T is a posi-
tive definite matrix. Then, for a given matrix R, a positive
constant η can be found to satisfy L̂R + RL̂T ≥ ηI.

Lemma 2.3 (Su, Chen, Lam, & Lin, 2013):With the def-
inition of A, B in (3), there exists a positive definite matrix
P such that

PA + ATP − PBBTP = −I. (5)

Lemma 2.4 (Su et al., 2013): Suppose D ∈ R
n×n is the

matrix defined as D= diag{n, n− 1,… , 1} , and P ∈ R
n×n

is a positive definedmatrix. Then, a positive constant σ can
be found such that

PD + DP ≥ σ I. (6)

Lemma 2.5 (Zhang & Cheng, 2005):With the definition
of A, C in (3), there exists a column vector L = [l1, l2,… ,
ln]T such that the matrix A − LC is a Hurwitz matrix.

3. Main results

3.1 State feedback regulation protocol

We propose a constructive procedure to design the state
feedback regulation protocol. For k = 2,… , N, the error
state between agent k and leader 1 is defined as x̃k,i =
xk,i − x1,i, i = 1, 2, . . . , n. Apparently, one can obtain

˙̃xk,i = x̃k,i+1 + fi
(
t, x̄k,i+1, uk

) − fi(t, x̄1,i+1, u1),
i = 1, 2, . . . , n − 1,

˙̃xk,n = uk − u1, k = 2, 3, . . . ,N. (7)

Then, we introduce the input protocol form

uk = αBTP
N∑
j=1

ak j�(x j − xk) + u1, k = 2, 3, . . . ,N,

(8)

where α is a constant to be determined later, B is as in (3),
P is defined in Lemma2.3, aij is the entry of the communi-
cation weight matrix A, and � = diag{ 1

γ n ,
1

γ n−1 , · · · , 1
γ
}

with γ > 1 being a function to be determined later.
The change of coordinate, for k = 2, 3,… , N,

x̂k,i = x̃k,i
γ n−i+1 , i = 1, 2, . . . , n,

can convert system (7) and input (8) into

˙̂xk = 1
γ
Ax̂k + 1

γ
B(uk − u1) + F̃k − γ̇

γ
Dx̂k, (9)

and

uk = −αBTP
N∑
j=2

lk jx̂ j + u1, (10)

where x̂k = [x̂k,1, x̂k,2, . . . , x̂k,n]T , A is denoted in (3), D
is defined in Lemma 2.4, lij is the entry of the matrix L in
(4), and

F̃k =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
γ n f1

(
t, x̄k,2, uk

) − 1
γ n f1

(
t, x̄1,2, u1

)
1

γ n−1 f2(t, x̄k,3, uk) − 1
γ n−1 f2

(
t, x̄1,3, u1

)
...

1
γ 2 fn−1(t, uk) − 1

γ 2 fn−1 (t, u1)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The closed-loop system (9), (10) can be rewritten as

˙̂x = 1
γ
I ⊗ Ax̂ − α

γ
L̂ ⊗ BBTPx̂ + F − γ̇

γ
I ⊗ Dx̂,

(11)
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where x̂ = [x̂T2 , x̂T3 , . . . , x̂TN]T , and F = [F̃T
2 , F̃T

3 , · · · ,

F̃T
N ]T .

With the description before, we state one of our main
results below.

Theorem 3.1: Under Assumption 2.1, constant α, and
function γ can be chosen for the state feedback protocol (8)
such that the state ofmulti-agent system (3), (4)will satisfy

lim
t→+∞ ‖xk(t ) − x1(t )‖ = 0, k = 2, 3, . . . ,N.

Proof: It is obvious thatwe just need to determine param-
eter α and dynamic gain γ such that the state of closed-
loop system (11) converge to x̂ = 0. Let V = x̂T (R ⊗
P)x̂,whereR and P are defined in Lemma 2.2 and Lemma
2.3, respectively. FromLemma2.2 and Lemma2.3, we can
know

PA + ATP − PBBTP = −I,

and

L̂R + RL̂T ≥ ηI

with η > 0 being a known constant.
The derivative of V along (11) can be calculated as

V̇ |(11) = 1
γ
x̂T

(
R ⊗ (PA + ATP)

− α(L̂R + RL̂T ) ⊗ PBBTP
)
x̂

+ 2x̂T (R ⊗ P)F − γ̇

γ
x̂TR ⊗ (PD + DP)x̂

≤ λmax(R) 1
γ
x̂T I ⊗ (PA + ATP)x̂

− αη 1
γ
x̂T I ⊗ PBBTPx̂

+ 2x̂T (R ⊗ P)F − γ̇

γ
σλmin(R)‖x̂‖2,

where σ is defined in Lemma 2.4.
Suppose α = λmax(R) 1

η
, and then

V̇ |(11) ≤ λmax(R) 1
γ
x̂T I ⊗ (PA + ATP − PBBTP)x̂

+ 2x̂T (R ⊗ P)F − γ̇

γ
σλmin(R)‖x̂‖2

≤ −λmax(R) 1
γ
‖x̂‖2 + 2x̂T (R ⊗ P)F

− γ̇

γ
σλmin(R)‖x̂‖2.

(12)
To determine γ , we will estimate the norm of function

F. According to (2) and the technology studied in Zhang
et al. (2014), a positive constant β1 can be found such that
the following estimation holds,

‖F‖ ≤ δ
β1

γ 2 ‖x̂‖. (13)

Thus, from (12) and (13), there exists a positive con-
stant β2 such that

V̇ |(11) ≤ −λmax(R)
1
γ

‖x̂‖2 + δ
β2

γ 2 ‖x̂‖2

− γ̇

γ
σλmin(R)‖x̂‖2. (14)

We can choose γ = c1t + 1 with c1 being a positive
constant to be determined. With the knowledge of this
equation

λmin(P)λmin(R)‖x̂‖2 ≤ V ≤ λmax(P)λmax(R)‖x̂‖2,

one can achieve

V̇ |(11) ≤ −
(
λmax(R) 1

γ
+ c1

γ
σλmin(R)

)
‖x̂‖2 + δ

β2
γ 2 ‖x̂‖2

≤ −
(
λmax(R) 1

γ
+ c1

γ
σλmin(R)

)
1

λmax(P)λmax(R)
V

+ δ
β2
γ 2

1
λmin(P)λmin(R)

V,

which indicates that

V (t ) ≤ γ
−(λmax(R)+c1σλmin(R)) 1

c1λmax (P)λmax (R)

eδβ2
1

c1λmin (P)λmin (R)
(1− 1

γ
)V (0).

Moreover, since

λmin(P)λmin(R)
1

γ 2n ‖x̃(t )‖2 ≤ V (t ),

we have

‖x̃(t )‖2 ≤ 1
λmin(P)λmin(R)

γ
2n−(λmax(R)+c1σλmin(R)) 1

c1λmax (P)λmax (R)

eδβ2
1

c1λmin (P)λmin (R)

(
1− 1

γ

)
V (0).

Note that c1 can be chosen such that c1 ≤
1

2nλmax(P)
, which shows that limt→+∞(c1t +

1)2n−(λmax(R)+c1σλmin(R)) 1
c1λmax (P)λmax (R) = 0. With the

knowledge of limt→+∞ δβ2
1
γ

= 0, we can achieve
limt → +�‖xk(t) − x1(t)‖ = 0, k = 2, 3,… , N.

That is, α, γ can be found in the protocol (8) to render
system (1) leader–follower regulation. �
Remark 3.1: It is shown that function γ satisfies γ � 1
for all t > 0, which is result from γ̇ ≥ 0. The technology
in Zhang et al. (2014) makes the gain be a constant and
the constant is larger then 1. Thus, the estimate (13) is
reasonable to be achieve.



2342 L. CHANG ET AL.

3.2 Output feedback regulation protocol

The regulation protocol designed before is not valid
when the agent can not get all the information of its
neighbour. Thus, it is necessary to design the output
feedback regulation protocol, which will be constructed
below.

For k = 1, 2,… , N, the observer for agent k can be
designed as,

{
żk,i = zk,i+1 + γ −ili(yk − zk,1), i = 1, 2, . . . , n − 1,
żk,n = uk + γ −nln(yk − zk,1),

(15)
where zk,i ∈ R is the state, li is defined in Lemma 2.5, and
γ is a function to be determined later.

Defining x̃k,i = xk,i − x1,i, and z̃k,i = zk,i − z1,i, i = 1,
2,… , n, k = 2, 3,… , N, one can achieve

⎧⎨
⎩

˙̃xk,i = x̃k,i+1 + fi
(
t, x̄k,i+1, uk

)
− fi

(
t, x̄1,i+1, u1

)
, i = 1, 2, . . . , n − 1,

˙̃xk,n = uk − u1, k = 2, 3, . . . ,N,

(16)
and

{ ˙̃zk,i = z̃k,i+1+γ −ili(x̃k,1−z̃k,1), i = 1, 2, . . . , n − 1,
˙̃zk,n = uk − u1 + γ −nln(x̃k,1 − z̃k,1), k = 2, 3, . . . ,N.

(17)
Let x̂k,i = x̃k,i−z̃k,i

γ n−i+1 , and ẑk,i = z̃k,i
γ n−i+1 , i = 1, 2,… , n, k =

2, 3,… , N, and then we can rewrite the system into the
matrix form

˙̂xk = 1
γ

(A − LC)x̂k + F̃k − γ̇

γ
Dx̂k, k = 2, 3, . . . ,N,

(18)
and

˙̂zk = 1
γ
Aẑk + 1

γ
B(uk − u1) − 1

γ
LCx̂k − γ̇

γ
Dẑk,

k = 2, 3, . . . ,N, (19)

where x̂k = [x̂k,1, x̂k,2, . . . , x̂k,n]T , ẑk = [ẑk,1, ẑk,2, . . . ,
ẑk,n]T , A, B and C are denoted in (3), L is defined in
Lemma 2.5, D is defined in Lemma 2.4, and

F̃k =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
γ n f1

(
t, x̄k,2, uk

) − 1
γ n f1

(
t, x̄1,2, u1

)
1

γ n−1 f2(t, x̄k,3, uk) − 1
γ n−1 f2

(
t, x̄1,3, u1

)
...

1
γ 2 fn−1(t, uk) − 1

γ 2 fn−1 (t, u1)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Theorem 3.2: With Assumption 2.1 holds, constant α,
function γ can be chosen such that the nonlinear multi-
agent system (3), (4) can achieve leader–follower regulation
under the following protocol

uk = αBTP
N∑
j=1

ak j�(z j − zk) + u1, k = 2, 3, . . . ,N,

(20)

where B is denoted in (3), P is defined in Lemma 2.3,
� = diag{ 1

γ n ,
1

γ n−1 , · · · , 1
γ
}, aij is the entry of the commu-

nication weight matrix A, and zj = [zj, 1, zj, 2,… , zj, n]T is
defined in (15).

Proof: From the description before, this result can be
deduced from the zero asymptotic convergence of sys-
tems (18) and (19).

Since A − LC is a Hurwitz matrix, there exists a posi-
tive definite matrix P1 such that

(A − LC)TP1 + P1(A − LC) = −I, (21)

and

DP1 + P1D ≥ σ1I (22)

with σ 1 > 0 being a known constant.
Let Vk = x̂Tk P1x̂k, k = 2, 3,…N. From (21) and (22),

the derivative of Vk along (18) can be expressed as

V̇k|(18) = x̂Tk P1(
1
γ
(A − LC)x̂k + F̃k)

+ ( 1
γ
(A − LC)x̂k + F̃k)TP1x̂k

− γ̇

γ
x̂Tk (P1D + DP1)x̂k

= − 1
γ
‖x̂k‖2 + 2x̂Tk P1F̃k − σ1

γ̇

γ
‖x̂k‖2.

(23)

According to (2) and (18), constant β1 can be found
such that the following estimates hold,

∥∥∥F̃k∥∥∥ ≤ β1δ
1
γ 2 (‖x̂k‖ + ‖ẑk‖), k = 2, 3, . . . ,N. (24)

From (23) and (24), one can find constantβ2 such that

V̇k|(18) ≤ − 1
γ

‖x̂k‖2+β2δ
1
γ 2 (‖x̂k‖2+‖ẑk‖2) − σ1

γ̇

γ
‖x̂k‖2.
(25)
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Meanwhile, based on (20), system (19) can be rewrit-
ten as the following compact form

˙̂z = 1
γ
I ⊗ Aẑ − α

1
γ
L̂ ⊗ BBTPẑ − 1

γ
I ⊗ LCx̂

− γ̇

γ
I ⊗ Dẑ (26)

with ẑ = [ẑT2 , ẑT3 , . . . , ẑTN]T , x̂ = [x̂T2 , x̂T3 , . . . , x̂TN]T , and
L̂ being the Laplacian matrix defined in (4).

LetV1 = ẑT (R ⊗ P)ẑ, where R and P are, respectively,
defined in Lemma 2.2 and Lemma 2.3 satisfy

PA + ATP − PBBTP = −I,

PD + DP ≥ σ2I,

and

L̂R + RL̂T ≥ ηI

with η > 0, σ 2 > 0 being known constants.
Settingα = λmax(R) 1

η
, a similar calculation shows that

the derivative of V1 along (26) holds

V̇1|(26) = 1
γ
ẑT

(
R ⊗ (PA + ATP)

− α(L̂R + RL̂T ) ⊗ PBBTP
)
ẑ

−2 1
γ
ẑT (R ⊗ PLC)x̂ − γ̇

γ
ẑTR ⊗ (PD + DP)ẑ

≤ −λmax(R) 1
γ
‖ẑ‖2 + 2β3

1
γ
‖x̂‖‖ẑ‖

− γ̇

γ
σ2λmin(R)‖ẑ‖2

≤ −λmax(R) 1
2γ ‖ẑ‖2+β4

1
γ
‖x̂‖2− γ̇

γ
σ2λmin(R)‖ẑ‖2,

(27)

where β3 = ‖R�PLC‖, and β4 = 2β3
1

λmax(R)
.

Note that ‖ẑ‖2 = ∑N
k=2 ‖ẑk‖2, and ‖x̂‖2 =∑N

k=2 ‖x̂k‖2. With V = V1 + 2β4
∑N

k=2Vk, a calcula-
tion followed (25) and (27) can be achieved

V̇ |(18),(26) ≤ −λmax(R) 1
2γ ‖ẑ‖2 − β4

1
γ
‖x̂‖2

+ 2β4β2δ
1
γ 2

(‖x̂‖2 + ‖ẑ‖2)
−2β4σ1

γ̇

γ
‖x̂‖2 − γ̇

γ
σ2λmin(R)‖ẑ‖2

≤
(

− 1
2γ

min{λmax(R), 2β4} + 2β4β2δ
1
γ 2

− γ̇

γ
min{2β4σ1, σ2λmin(R)}

)
(‖x̂‖2 + ‖ẑ‖2).

Furthermore, based on the definition ofV, one can get

μ1(‖x̂‖2 + ‖ẑ‖2) ≤ V ≤ μ2(‖x̂‖2 + ‖ẑ‖2).

where μ1 = min {λmin (R)λmin (P), 2β4λmin (P1)}, and
μ2 = max {λmax (R)λmax (P), 2β4λmax (P1)}.

Therefore, positive constants β5, β6, and β7 can be
found such that

V̇ |(18),(26) ≤ −β5
1
γ
V + δβ6

1
γ 2V − β7

γ̇

γ
V.

Letting γ = c1t + 1 with c1 being a positive constant to
be determined, we have

V (t ) ≤ γ
− 1

c1
β5−β7eδβ6

1
c1

(1− 1
γ

)V (0),

and

‖x̃ − z̃‖2 + ‖z̃‖2 ≤ 1
μ1

γ
2n− 1

c1
β5−β7eδβ6

1
c1

(1− 1
γ

)V (0),

where x̃ = [x̃T2 , x̃T3 , . . . , x̃TN]T , z̃ = [z̃T2 , z̃T3 , . . . , z̃TN]T

with x̃k = [x̃k,1, x̃k,2, . . . , x̃k,n]T , z̃k = [z̃k,1, z̃k,2, . . . ,
z̃k,n]T , k = 2, 3,… , N.

The constants c1 can be chosen such that c1 ≤ β5
2n , and

we can get

‖x̃ − z̃‖2 + ‖z̃‖2 ≤ 1
μ1

γ −β7eδβ6
1
c1

(1− 1
γ

)V (0),

which indicates that

lim
t→+∞ ‖x̃k‖ = 0, lim

t→+∞ ‖z̃k‖ = 0, k = 2, 3, . . . ,N.

Thus, under the protocols (20) and (15), the nonlinear
multi-agent system (1) can achieve the leader–follower
regulation. �

4. A numerical example

To illustrate the designed protocols, we consider a group
of 5 agents with identical single-input single-output non-
linear dynamics, which is indexed by 1,2,3,4,5. In this
multi-agent system, the agent labelled by 1 is referred as
the leader and the agents labelled by 2,3,4,5 are called
the followers. We also assume that all the follower agents
know the input of the leader agent. For k = 1, 2, 3, 4, 5,

1

2

3

4

5

Figure . Communication topology.
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agent k has the following identical feedforward dynamic:

ẋk,1 = xk,2 + δ(t ) tanh(xk,3) + ln(1 + δ2(t )uk),
ẋk,2 = xk,3 + δ(t ) tanh(uk),
ẋk,3 = uk,
yk = xk,1,

(28)

where xk = [xk,1, xk,2, xk,3]T ∈ R
3 is the state of agent k,

uk ∈ R and yk ∈ R are the input and output of agent k,
respectively. δ(t) is an unknown bounded function whose
boundedness is unknown a priori.

The communication topology graph is shown in
Figure 1.

Then, the information weight matrixA and the Lapla-
cian matrix L can be expressed as

A =

⎛
⎜⎜⎜⎜⎝
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 1 1 0

⎞
⎟⎟⎟⎟⎠ ,

L =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
−1 1 0 0 0
−1 0 1 0 0
0 0 −1 1 0
0 0 −1 −1 2

⎞
⎟⎟⎟⎟⎠ .

We can achieve that this multi-agent system
satisfies Assumption 2.1 and the network graph con-
tains a directed spanning tree. With η = 1, the definition
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Figure . The states response of the closed-loop systems () and ().
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Figure . The errors response of the closed-loop systems () and ().

of P, R can be expressed as follows by employing both
Lemma 2.2 and Lemma 2.3,

P =
⎛
⎝2.4142 2.4142 1.0000
2.4142 4.8284 2.4142
1.0000 2.4142 2.4142

⎞
⎠ ,

R =

⎛
⎜⎜⎝
1.2 0 0 0
0 1.6 0 0
0 0 1.1 0
0 0 0 0.5

⎞
⎟⎟⎠ .

When the initial condition of the agent state is differ-
ent, for example, x1 = [ − 5, −10, 5]T, x2 = [5, 10, −5]T,
x3 = [ − 10, 0, 10]T,x4 = [10, −5, −10]T, x5 = [5, 5, 0]T,

the regulation protocol is necessary to be constructed.
To render the multi-agent system leader–follower regu-
lation, we present both the state feedback protocol and
the output feedback protocol based on the designed pro-
cedure before.

For the state feedback case, the regulation form can be
designed as

uk = αBTP
5∑
j=1

�ak j(x j − xk) + u1, k = 2, 3, 4, 5,

(29)
where B = [0, 0, 1]T, � = diag{ 1

γ 3 ,
1
γ 2 ,

1
γ 1 } with γ being

determined later,α is to be determined, and aij is the entry
ofA.
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From the designed procedure in Section 3.1, we can
choose α = 1.6, γ = 0.02t + 1. Figure 2 shows the sim-
ulation results under the condition u1(t) = 0. The state
errors are presented in Figure 3. It is obvious that multi-
agents system (28) with protocol (29) can achieve leader–
follower regulation.

For the output feedback case, the regulation form can
be designed as:

uk = αBTP
5∑
j=1

�ak j(z j − zk) + u1, k = 2, 3, 4, 5,

(30)

where B= [0, 0, 1]T, and zk = [zk, 1, zk, 2, zk, 3]T is the state
of the following system:

żk,1 = zk,2 + 1.1γ −1(yk − zk,1),
żk,2 = zk,3 + 0.8γ −2(yk − zk,1),
żk,3 = uk + 0.1γ −3(yk − zk,1).

(31)

Let the initial condition of the observer system as
zk(0) = 0, k = 1, 2, 3, 4, 5. Moreover, α = 1.6 and
γ = 0.005t + 1 are determined from the designed proce-
dure in Section 3.1. Therefore, the simulation results are
shown in Figure 4 when u1(t) = 0. The error responses is
shown in Figure 5. It can be found that the protocols (30)
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Figure . The states response of the closed-loop systems (), () and ().
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Figure . The errors response of the closed-loop systems (), () and ().

and (31) can render the multi-agent system (28) leader–
follower regulation.

5. Conclusion

This paper shows that the genuine regulation algorithms,
which takes full advantage of neighbour states and out-
puts, are effective to render the uncertain leader–follower
nonlinear multi-agent systems regulation for all initial
state values. A decentralised dynamic low-gain technol-
ogy is introduced, where the rate of the dynamic gain
is determined to dominate the unknown feedforward
systems. An example, which has obvious nonlinear
characteristics, has been presented to show that the
performance could be achieved under the proposed

regulation algorithms. One possible future topic is to
consider heterogeneous nonlinear multi-agent systems
with each agent described by different uncertain feedfor-
ward nonlinear dynamics.
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